西安凯普医学检验所建设项目竣工环境保护验收监测报告表

建设单位: 西安凯普医学检验所有限公司_

编制单位: 陕西昌泽环保科技有限公司

建设单位法人代表(签字):

编制单位法人代表(签字):

项目负责人:

填表人:

建设单位: 西安凯普医学检验所有限公司(盖章) 编制单位: 陕西昌泽环保科技有限公司(盖章)

电话: 13484611393 电话: 029-86557929

邮编: 710016 邮编: 710018

地址:西安市经济开发区泾渭新城泾高北路中段 地址:陕西省西安市经济技术开发区草滩九路 360

1号3栋202号 号西安人工智能与机器人产业园5号楼4~5楼

前言

西安凯普医学检验所是一家医学诊断外包服务的医疗机构,属于第三方医学检验行业,开展多数实验室不开展的特殊项目,满足大型综合性医院对一些特殊测试的需求。本项目建设主要为中小型医院,特别是社区卫生服务中心、私立医院等自身临床检验能力薄弱的医院,提供全面的临床检验服务。西安凯普医学检验所有限公司购买泾渭中小工业园 1 号 3 栋 202 号厂房进行建设,占地面积 700m²,投资 500 万元,用于临床细胞分子遗传学试验检测,年检样本数量 150000 个。

依据《中华人民共和国环境影响评价法》和《建设项目环境保护管理条例》、《建设项目环境保护分类管理名录》的有关规定,2016 年 6 月 2 日,该项目取得陕西省卫生计生委关于同意设置西安凯普医学检验所的批复(陕卫医发(2016)79 号);2016 年 11 月 1 日,该项目取得西安经济技术开发区管理委员会关于西安凯普医学检验所有限公司西安凯普医学检验所建设项目备案的通知(西经开发(2016)392 号);2016 年 11 月,西安凯普医学检验所有限公司委托中辉囯环(北京)科技发展有限公司编制完成了《西安凯普医学检验所建设项目环境影响报告表》;2016 年 12 月 15 日,西安市环境保护局经济技术开发区分局以(经开环批复(2016)195 号)文对该项目予以批复。目前,该项目各项环保设施均已建设完成并投入试运行,满足建设项目竣工环境保护验收监测的要求。

2021年3月,西安凯普医学检验所有限公司委托陕西昌泽环保科技有限公司对"西安凯普医学检验所建设项目"进行建设项目竣工环境保护验收监测。接受委托后,我公司组织相关专业技术人员进行了现场勘查,收集整理了《西安凯普医学检验所建设项目环境影响报告表》、环评批复文件等相关资料,并于2021年4月7日~8日对该项目进行了现场监测,根据监测结果和检查结果,编制了该项目竣工环境保护验收监测报告表。

本次验收范围包含《西安凯普医学检验所建设项目环境影响报告表》中污染防治措施及配套工程设施相关内容。

表一 建设项目基本情况

	· 在以外口坐中间儿						
建设项目名称	西安凯普医学检验所建设项目						
建设单位名称	西	西安凯普医学检验所有限公司					
建设项目性质	新	建☑改扩建□ 扌	技改□ 迁建□				
建设地点	西安市经济开发	区泾渭新城泾高	5北路中段1号	号 3 栋 202 号	号		
主要产品		/					
设计生产能力		年检样本数量	150000 个				
实际生产能力		年检样本数量	150000 个				
建设项目 环评时间	2016年8月	现场监测 时间	2021年	4月7日~8	3 日		
环评报告表 审批部门	西安市环境保护局经 济技术开发区分局	西安市环境保护局经 环评报告表 中辉国环(北京)科技发展					
概算总投资	500 万元	概算环保 投资	30 万元	比例	6%		
实际总投资	500 万元	概算环保 投资	26 万元	比例	5.2%		
占地面积	700m ²	绿化面	面积	0m	2		
验收监测依据	1、《中华人民共和国环境保护法》,2015 年 1 月 1 日起施行; 2、《建设项目环境保护管理条例》,国务院令第 682 号; 3、《中华人民共和国环境影响评价法》,2018 年 12 月 29 日修正; 4、《中华人民共和国大气污染防治法》,2018 年 10 月 26 日修正; 5、《中华人民共和国水污染防治法》,2017 年 6 月 27 日修正; 6、《中华人民共和国环境噪声污染防治法》,2018 年 12 月 29 日修正; 7、《中华人民共和国国体废物污染环境防治法》,2020 年 9 月 1 日起施行; 8、《建设项目竣工环境保护验收暂行办法》(国环规环评(2017)4 号); 9、《建设项目竣工环境保护验收技术指南 污染影响类》(生态环境部公告 2018 年 第 9 号);						
	建设项目环境影响报告	表》(2016年	8月);				

续表一 建设项目基本情况

验	収
监	测

依据

11、西安市环境保护局经济技术开发区分局《关于西安凯普医学检验所建设项目环境影响报告表》的批复(经开环批复(2016)195号)(2016年12月5日);

12、西安凯普医学检验所有限公司提供的相关资料。

根据项目环评报告、批复及最新标准排放要求,验收执行标准如下:

1、废气:

废气执行《大气污染物综合排放标准》(GB16297-1996)表 2 标准限值, 具体执行见表 1-1。

表 1-1 废气污染物执行标准一览表

验收监标标

执行标准	污染类型		标准限值 (mg/m³)	排放速率 (kg/h)	排气筒高度 (m)
《大气污染物综合排	氯化	有组织	100	0.26	15
放标准》	一一	无组织	0.20	/	/
(GB16297-1996)表 2	表 2 非甲 烷 总烃	有组织	120	10	15
标准限值		无组织	4.0	/	/

2、污水

级别

号、

医疗污水排放执行《医疗机构水污染物排放标准》(GB18466-2005)表 2 中预处理标准,具体见表 1-2。

表 1-2 污水执行标准一览表 单位: mg/L

	医疗污水						
排放	pH 值 (无量纲)	COD	BOD ₅	SS	氨氮	粪大肠菌群 (MPN/L)	总余氯
(GB18466-2005) 表 2 中预处理标准	6~9	250	100	60		5000	/

续表一 建设项目基本情况

3、厂界噪声:

项目厂界噪声执行《工业企业厂界环境噪声排放标准》 (GB12348-2008)3类声功能区标准,具体见表 1-3。

表 1-3 工业企业厂界环境噪声排放限值 单位 dB(A)

验收监测标准 标准号、 级别

执行标准	厂界外声环境功能 区类别	时 段 昼间
《工业企业厂界环境噪声排放 标准》(GB12348-2008)	3	65

4、固体废物:

一般固体废物执行《一般工业废物贮存、处置场污染控制标准》 (GB18599-2001)及2013年修改单,生活垃圾执行《生活垃圾填埋场污染物控制标准》(GB16889-2008)及修改单,危险废物执行《危险废物贮存控制标准》(GB 18579-2001)及2013年修改单。

总量控制

环评建议本项目 COD、NH3-N 申请总量分别为 0.076t/a、0.0076t/a。

表二 建设项目工程概况

2.1 建设项目基本情况

项目名称: 西安凯普医学检验所建设项目

建设单位: 西安凯普医学检验所有限公司

建设性质:新建

建设地点: 西安市经济开发区泾渭新城泾高北路中段 1 号 3 栋 202 号

建设规模: 年检样本数量 150000 个

2.2 建设项目地理位置及四邻关系

西安凯普医学检验所有限公司建设于西安市经济开发区泾渭新城泾高北路中段 1 号 3 栋 202 号厂房。项目所在楼房共计两层,本项目厂房位于二层,厂房正下方一层为陕西燎原净化设备有限公司西安分公司,厂房紧邻的北侧、西侧均为园区已建厂房,东侧紧邻渭东路,南侧为园区绿化地带。地理位置图详见附图 1,四邻关系图详见附图 2。

2.3 建设内容

本项目主要建设医学检验科(临床细胞分子遗传学专业),包括人乳头状瘤病毒 (HPV)分型检测、13 种高危人乳头状瘤病毒分型检测、高危人乳头状瘤病毒核酸检测、37 种人乳头状瘤病毒分型检测、淋球菌/沙眼衣原体/解脲脲原体检测、沙眼衣原体核酸检测、α-和β-地中海贫血基因突变检测等分子生物学检验科目,项目具体组成见表 2-1。

表 2-1 项目工程组成对照表

项目名称 建设内容		建设内容	实际建设内容	与环评一 致性
主体工程	检验 设施	样本暂存区、标本制备区、试剂准 备 、试剂仓库、扩增区、产物分析 区、综合实验区等。	项目样本暂存区、标本制备区、 试剂准备、试剂仓库、扩增区、 产物分析区、综合实验区等已 建设。	一致
辅助 工程	辅助 检验 设施	高压灭菌室、洗消间、更衣室、机 房、报告打印室等。	高压灭菌室、洗消间、更衣室、 机房、报告打印室等已建设。	一致
△ / / 注	办公 区	经理办公室、主任办公室、财务办 公室、会议室、接待区等	经理办公室、主任办公室、财 务办公室、会议室、接待区等	一致
储运 工程	库房	样本暂存区、试剂仓库、医废暂存 间	样本暂存区、试剂仓库、医废 暂存间已建设。	一致
公用工和	供电 工程	项目电力园区已建成变电站,可满 足本项目用电。	项目园区变电站已建设,本项 目接入园区变电站,可满足本 项目用电。	一致
工程	采暖 工程	分体式空调制冷及采暖。	分体式空调制冷及采暖。	一致

	续表 2-1 项目工程组成对照表						
项目	名称	建设内容	实际建设内容	与环评一 致性			
公用工程	给排 水工 程	供水:项目用水由市政供水管网提供,采用生活、消防合一的给水系统。 排水:采取雨污分流,清污分流;生产污水进行预处理达标后与生活污水一同排入园区化粪池处理达标后排放。	供水:项目用水由市政供水管网提供,采用生活、消防合一的给水系统。 排水:采取雨污分流,清污分流; 医疗污水排入一体化污水处理设备("调节池+砂滤罐+碳滤罐+消毒+过滤+反渗透")处理后同生活污水一起排入园区污水处理设施处理,达标后排放。	园区化粪 池改为污 水处理设 施			
	废气 排风系统,生物安全柜		样本提取过程产生微生物气溶胶废气,提取在生物安全柜中进行,处理后经排放系统排出;实验室挥发性废气、恶臭废气经换风引至实验楼内置管道,由实验楼楼顶活性炭吸附净化装置处理后,经15m高排气筒排放。	一致			
环保 工程	污水	设医疗污水处理系统一套,用于处理医疗污水;生活污水依托园区化粪池处理,处理达标后排入泾渭新城污水处理厂。	医疗污水排入一体化污水处理设备("调节池+砂滤罐+碳滤罐+消毒+过滤+反渗透")处理后同生活污水一起排入园区污水处理设施处理,最终排入泾渭新城污水处理厂。	园区化粪 池改为污 水处理设 施			
	噪声	选用低噪声设备,采用基础减震和 厂房隔声。	实验室设备安装减震垫,实验室 及办公室采用隔声效果好的隔 声门窗,墙体采用吸声材料。	一致			
	固废	医疗废物分类集中收集后交由资 质单位处理; 职工生活垃圾统一收集交由环卫 部门处理。	生活垃圾:分类收集于垃圾桶,由环卫部门统一清运;医疗废物、实验室废液:分类单独收集,暂存于医废暂存间,定期由西安卫达实业发展有限公司处置;污水站污泥、废石英砂、废活性炭及废过滤网:分类收集暂存于危废暂存间,定期委托陕西领凡环保工程有限公司处置。	一致			

产品方案见表 2-2。

表 2-2 产品方案一览表

序号		环评要求检测项目	实际检测项目	与环评一致性
1		人乳头状瘤病毒(HPV)分型检 测	人乳头状瘤病毒(HPV)分 型检测	一致
2	临床 细胞	13 种高危人乳头状瘤病毒分型检测	13 种高危人乳头状瘤病毒分型检测	一致
3	分子 遗传	高危人乳头状瘤病毒核酸检测	高危人乳头状瘤病毒核酸检 测	一致
4	学项 目	37 种人乳头状瘤病毒分型检测	37 种人乳头状瘤病毒分型检测	一致
5		淋球菌/沙眼衣原体/解脲脲原体 检测	淋球菌/沙眼衣原体/解脲脲 原体检测	一致

6	沙眼衣原体核酸检测	沙眼衣原体核酸检测	一致
7	解脲脲原体核酸检测	解脲脲原体核酸检测	一致
8	α-和β-地中海贫血基因突变检测	α-和β-地中海贫血基因突变 检测	一致

2.4 主要原辅材料

项目主要原、辅材料消耗量见表 2-3。

表 2-3 主要原辅材料及能耗对照表

序号	名称	状态	规格	环评年用量	实际年用量	备注
1	人乳头状瘤病毒(HPV)分 型检测试剂盒	液态	盒装	3000 盒	3000 盒	DNA 定性试剂盒
2	α-和β-地中海贫血基因检测试剂盒	液态	盒装	100 盒	100 盒	DNA 定性试剂盒
3	13 种高危型人乳头状瘤病 毒核酸检测试剂盒	液态	盒装	500 盒	500 盒	DNA 定量试剂盒
4	高危型人乳头瘤病毒核酸检 测试剂盒	液态	盒装	500 盒	500 盒	DNA 定量试剂盒
5	37 种人乳头状瘤病毒分型检测试剂盒	液态	盒装	500 盒	500 盒	DNA 定量试剂盒
6	淋球菌/沙眼衣原体/解脲脲 原体检测试剂盒	液态	盒装	300 盒	300 盒	DNA 定性试剂盒
7	沙眼衣原体核酸检测试剂盒	液态	盒装	500 盒	500 盒	DNA 定量试剂盒
8	解脲脲原体核酸检测试剂盒	液态	盒装	500 盒	500 盒	DNA 定量试剂盒
9	耳聋易感基因检测试剂盒 (PCR+导流杂交法)	液态	盒装	100 盒	100 盒	
10	乙肝病毒荧光检测试剂盒	液态	盒装	100 盒	100 盒	
11	消毒药片	固态	瓶装	0.04 吨	0.04 吨	
12	生理盐水(0.9%氯化钠)	液态	瓶装	0.4 吨	0.4 吨	
13	枪头	固态	袋装	0.5 吨	0.5 吨	包括大、小枪头
14	一次性实验用品	固态		0.5 吨	0.5 吨	包括一次性口罩、帽子、手套、鞋套
15	离心管	固态	袋装	0.3 吨	0.3 吨	
16	乙醇	液态	瓶装	0.01 吨	0.01 吨	
17	异丙醇	液态	瓶装	40.8L/a	40.8L/a	

2.5 主要生产设备

项目主要生产设备见表 2-4。

表 2-4 主要生产设备对照表

	W 2	4 工文工/ 久田/	リハハマ		
设备名称	设备规格	实际设备规格	设备数量(台)	实际数量 (台)	备注
涡旋混合器	XW-80A	XW-80A	2	3	溶液混匀
迷你离心机	Mini 6K	Mini 6K	2	2	用于分离和沉淀 物质
高速离心机	24孔	24孔	1	3	用于分离和沉淀物 质
生物安全柜	BSC-1500 II A2-X	BSC-1500 II A2-X	2	6	用于安全实验操作 (3用3备)
干式恒温器	杭州奥盛K30B	杭州奥盛K30B	1	3	32*1.5ml+9*0.5ml
	96孔	96孔	1	3	荧光PCR扩增
普通PCR仪	96孔	96孔	2	2	PCR扩增
台式电脑	联想	联想	2	3	数据输入
医用核酸分子杂 交仪	HHM系列、 HB系列	HB系列	4	2	导流杂交用
电热恒温水浴箱	新康420C	新康420C	1	1	/
	致微GR系列	致微GR系列	1	1	对瓶子、残留样本和 试剂管灭菌
移动紫外车	江苏申星光电	35623型	4	6	消毒用
自动提取仪	/	4801型	/	1	/
医疗污水处理 设施	/		1	1	"调节池+砂滤罐+ 碳滤罐+消毒+过滤 +反渗透"工艺

2.6 平面布置

西安凯普医学检验所建设项目位于西安市经济开发区泾渭新城泾高北路中段 1 号 3 栋 202 号,本项目所用场地为购买工业园区公司现有的厂房,占地面积 700 m²,总建筑面积 700 m²,厂房正下方一层为陕西燎原净化设备有限公司西安分公司,厂房紧邻的北侧、西侧均为园区已见厂房,东侧紧邻渭东路,南侧为园区绿化地带,本项目厂区总平面布置见附图 3。

2.7 劳动定员及工作制度

劳动定员:项目总定员 20 人,其中项目内检验人员约 10 人,管理人员及其他人员约 10 人。

工作制度:每天1班,每班工作8小时,全年工作300天。

2.8 项目公用工程

(1) 给水

本项目供水采取分质供水,包括自来水和外购的纯净水。自来水来源于工业园区自来水管网,用途包括职工生活用水、仪器设备清洗用水和检验室清洁用水,本项目医学检验用水为外购的纯净水。

(2) 排水

本项目产生的污水主要是生活污水及医疗污水,其中医疗污水中的实验废液为危险 废物,委托西安卫达实业发展有限公司处置。

根据排水性质不同,采用分质分流排水手段,将检测污水、仪器设备清洗污水及检验室清洁污水等医疗污水排入项目一体化污水处理设备处理后同生活污水一起排入园区污水处理设施处理,达标后经市政管网排入泾渭新城污水处理厂,项目具体用、排水量见表 2-5、水平衡图见图 1-1。

用水环节	单位	年用水量	污水产生量	污水排放量	备注			
生活用水	t/a	300	240	240	损失按 20%计			
仪器及实验区 清洗用水	t/a	150	150	150	损失按0计			
实验服清洗	t/a	21.5	21.5	21.5	损失按0计			
合计	t/a	471.5	411.5	411.5	/			

表 2-5 建设项目给、排水量表

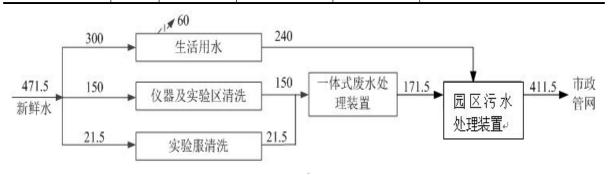


图1 项目水平衡(m³/d)

2.9 主要生产工艺

建设项目设人乳头状瘤病毒(HPV)分型检测、37 种人乳头状瘤病毒核酸检测、α-地中海贫血基因突变检测、β-地中海贫血基因突变检测、淋球菌/沙眼衣原体/解脲脲原体检测、13 种高危人乳头状瘤病毒核酸检测、高危人乳头瘤病毒核酸检测、解脲脲原体核酸检测和沙眼衣原体核酸检测,共 9 项检测项目,根据检测项目性质及特点,检

测方法分为两种,分别为普通 PCR+导流杂交法和荧光 PCR 法。

(1) 普通 PCR+导流杂交法检测:本方法适用于人乳头状瘤病毒(HPV)分型检测、37 种高危人乳头状瘤病毒核酸检测、α-地中海贫血基因突变检测、β-地中海贫血基因突变检测、淋球菌/沙眼衣原体/解脲脲原体的检测,检测流程见图 2。

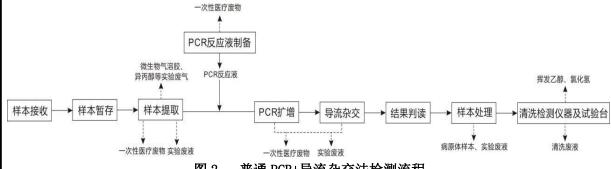
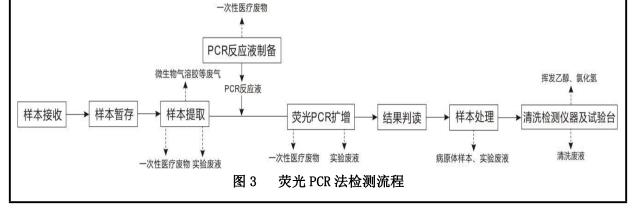



图 2 普通 PCR+导流杂交法检测流程

- ①反应液制备:将已解冻的 PCR Premix 放在振荡器上震荡 10s 后放入离心机中点动;取出 Taq 酶放入离心机中点动;将上述物质放入超净工作台分装,并按比例要求配置反应液,试剂混合后放在涡旋器上震荡 5s,配置完成分装混合液送入标本处理室;
- ②DNA 提取:取样本 500μL, 14000rpm 离心 1min, 去上清液,按提取要求加入检测试剂盒中相应试剂提取 DNA,最后,取 1μL 提取好的 DNA 作为模板放入产物扩增 区进行扩增,剩余 DNA 样品存于要求温度下,备用;
- ③PCR 扩增:在 PCR 扩增仪设定所需扩增程序,将 PCR 扩增管放入扩增仪,完成 扩增后将 PCR 扩增管放入冰水中 2~5min,最后取出扩增管送入产物分析区:
- ④导流杂交: 将杂交液预热至 45℃,连接导流杂交仪设置恒温 45℃,用杂交液清洗反应设备,清洗后按制备要求将 PCR 产物与杂交液混合温育 10min 后开泵进行导流杂交,杂交后滴加相应试剂进行显色反应;
 - ⑤结果判读:根据肉眼观察分析实验结果。
- (2) 荧光 PCR 检测:本方法适用于 13 种高危人乳头状瘤病毒核酸检测、高危人乳头瘤病毒核酸检测、解脲脲原体核酸检测和沙眼衣原体核酸的检测,检测流程见图 3。

检测流程:

按制备要求相应加入试剂对样品进行处理,将 PCR_{mix}和 DNA 聚合酶摇匀,8000rpm/min 进行离心操作,将上述物质按比例混合配制扩增试剂,把配制好的试剂摇匀离心后,在反应罐中均加入 18μL 配制好的试剂,送入样品处理区;在对应的 PCR 反应管中加入 2μL 处理好的 DNA 样品,盖紧离心;放入荧光 PCR 检测仪内,分析后读取实验结果。

(3) 污水处理工艺

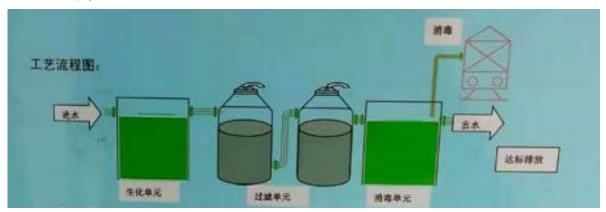


图-6 医疗污水处理工艺流程图

流程叙述:实验污水通过排水管道排入污水处理系统,首先进入调节池,随后污水进入砂滤罐,采用石英砂作为介质,有效的截留除去水中的悬浮物、有机物、胶质颗粒、微生物、氯、嗅味及部分重金属离子等,降低污水浊度,净化水质;砂滤罐出水进入碳滤罐,碳滤罐内部填充活性炭,用来过滤水中的游离物、微生物、部分重金属离子,并能有效降低水的色度;最后,碳滤罐出水进入消毒池进行消毒,经消毒处理后的水进行过滤和反渗透处理达标后排入园区污水管网,最终排入泾渭新城污水处理厂。

2.10 项目变动情况

经查阅《关于印发污染影响类建设项目重大变动清单(试行)的通知》(环办环评函(2020)688号),建设项目的性质、规模、地点、生产工艺和环境保护措施五个因素中的一项或一项以上发生重大变动,且可能导致环境一项明显变化(特别是不利影响加重)的界定为重大变动,属于重大变动的应当重新报批环境影响评价文件。

根据现场调查,因企业生产设备采取动态管理,项目设备个别存在变化,但项目建设性质、地点、规模、生产工艺和环境保护措施与环评一致,未产生环境污染,故本项目无重大变动。

表三 主要污染源、污染物处理和排放情况

3.1 主要污染源和污染物

3.1.1 废气

废气主要为样本提取过程中产生的微生物气溶胶及少量挥发性试剂废气(主要为乙醇、氯化氢和异丙醇)及污水处理设备产生的恶臭气体。

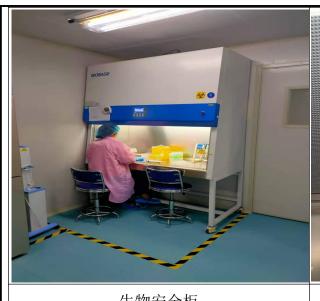
312 污水

污水主要为实验室医疗污水及生活污水等。

3.1.3 噪声

噪声主要来源于生物安全柜压缩机、医疗污水处理系统水泵及实验设备运行噪声等 设备运行噪声。

3.1.4 固体废物


固体废物主要为生活垃圾和医疗废物、实验废液、污水站污泥、废石英砂、废活性 炭,废气治理产生的废活性炭和废过滤网。

3.2 污染物处理和排放情况

3.2.1 废气

- 1) 样本提取过程产生微生物气溶胶废气: 样本提取在生物安全柜中进行,提取过程中生物安全柜内环境呈负压状态,且生物安全柜内设有高效过滤网,废气经高效过滤网过滤净化处理后成为清洁空气由生物安全柜上方排气口排放,生物安全柜的排风管道与排风系统连接,处理后的废气通过排风管道排出室外。
- 2)挥发性试剂废气(主要为乙醇、氯化氢和异丙醇):实验室内设置有换气排风装置引至实验楼楼顶排放口,且楼顶排风口处设活性炭吸附净化装置处理后,经15m高排气筒排放;
- 3)恶臭气体:污水处理设备运行过程为全封闭状态运行,设备散逸的恶臭气体较少,浓度较低,污水处理间内设置换风口,恶臭气体经换风引至实验楼内置管道,最后经实验楼楼顶排放口排放,且楼顶排风口处设活性炭吸附净化装置处理后,经 15m 高排气筒排放。

废气处理设施照片:

生物安全柜

高效过滤网

实验室换气排风

实验室引至楼顶通风管道

活性炭处理装置+15m 高排气筒

3.2.2 污水

医疗污水排入一体化污水处理设备("调节池+砂滤罐+碳滤罐+消毒+过滤+反渗透")处理后同生活污水一起排入园区一体化污水处理设施处理,最终排入泾渭新城污水处理厂。

污水处理设施照片:

医疗污水处理系统

园区污水处理设施

3.2.3 噪声

实验室设备安装减震垫,实验室及办公室采用隔声效果好的隔声门窗,墙体采用吸声材料。

3.2.4 固体废物

- 1) 生活垃圾: 分类收集于垃圾桶,由环卫部门统一清运;
- 2) 医疗废物、实验室废液:分类单独收集,暂存于医废暂存间,定期委托西安卫达实业发展有限公司处置;
- 3)污水站污泥、废石英砂、废活性炭及废过滤网:分类收集暂存于危废暂存间, 定期委托陕西领凡环保工程有限公司处置。

固废处置照片:

医疗废物暂存间

危废物储存间

医疗废物管理制度

危废暂存间

危废暂存筒、托盘

危废管理制度

表四 环评报告表的结论及环评审批意见

4.1 环评结论与建议

1、项目概况

西安凯普医学检验所建设项目总投资 500 万元,项目位于西安市经济开发区泾渭新城泾高北路中段 1 号 3 栋 202 号厂房,总建筑设面 700m²。本项目不新征土地,购买泾渭中小工业园现有厂房进行建设,用于医学检验科(临床细胞分子遗传学专业),预计年检样本数量 150000 个。

2、环境质量现状

①环境空气

本次评价委托西安京诚检测技术有限公司与 2016 年 6 月 25 日至 7 月 1 日连续 7 日对项目所在地进行了环境空气质量现状监测。监测结果表明,区域 SO₂、NO₂ 1 小时平均值、24 小时平均值及 PM₁₀ 24 小时平均值均满足 GB3095-2012《环境空气质量标准》二级标准,拟建项目区域环境空气质量现状良好。

②本次评价委托西安京诚检测技术有限公司对项目所在地声环境质量进行监测,监测结果表明,本项目所在区域声环境符合 GB3096-2008《声环境质量标准》3 类区标准要求,当地声环境质量状况良好。

3、营运期环境影响分析

(1) 大气环境影响评价结论

本项目生产运营过程中主要废气污染物包括实验废气和污水处理设备恶臭气体,厂房设置生物安全柜,废气通过柜内高效过滤器过滤及活性炭吸附净化装置净化后,进入排风系统由排气口高空排放,本项目废气均可做到达标排放,对周围环境影响较小。

(2) 水环境影响评价结论

医疗污水经一体式处理工艺预处理达标后,同生活污水一起排入园区化粪池,处理工艺为"调节池+砂滤罐+碳滤罐+消毒+过滤+反渗透";生活污水依托园区化粪池处理达标后经市政管网排入泾渭新城污水处理厂处理。本项目污水能够得到有效治理,污水不直接进入地表水体,对周围地表水环境影响较小。

(3) 声环境影响评价结论

项目尽量选用医用低噪声设备,室内设备噪声经基础减振、厂房隔音,厂界噪声可达到 GB12348-2008《工业企业厂界环境噪声排放标准》中的3类区排放限值,对周围

环境影响较小。

(4) 固体废弃物影响评价结论

项目生产中产生职工生活垃圾交由环卫部门处理; 医疗废物,实验废液,污水处理产生的污泥、废石英砂、废活性炭,废气治理产生的废过滤网、废活性炭等属于危险废物,收集交有资质单位处理。因此,本项目固体废弃物处置率 100%,对环境影响较小。

4、总量控制结论

根据建设项目的排污特征和当地有关要求,本次环评建议总量控制指标为:

COD: 0.076t/a, 氨氮: 0.0076t/a。

5、总结论

西安凯普医学检验所有限公司西安凯普医学检验所建设项目符合国家产业政策, 生产过程严格落实本报告提出的污染防治措施后,可做到达标排放,对环境影响较小。 从环保的角度分析,项目建设可行。

二、要求和建议:

- 1、严格落实本报告所提污染防治措施,确保污染治理设施与主体工程实现"三同时"。
 - 2、及时进行环境工程竣工验收。
 - 3、加强环保设施、设备的日常维修和保养,发现问题及时处理。
 - 4、医疗废物、实验废液等危险废物应及时委托有资质的单位进行无害化处理。
 - 5、对厂房功能区进一步细化,做到废弃物分类收集有序管理,加强环境管理。
- 6、由于本项目具有的医学生物及病毒检测的专业性,因此必须首先通过相关专业管理部门的审核,特别是完善安全生产方面的各项审批手续。

4.2 环评批复意见

西安市环境保护局经济技术开发区分局

关于西安凯普医学检验所有限公司西安凯普医学检验所建设项目环境影响报告表的批复

经开环批复〔2016〕195号

西安凯普医学检验所有限公司:

你单位报来的《西安凯普医学检验所项目环境影响报告表》(以下简称"报告表") 收悉。根据国家建设项目有关法律法规及相关技术规范,结合专家技术评估意见。经审 查,批复如下:

一、该项目位于西安经济技术开发区泾渭新城泾高北路中段,主要进行医学检验科

(临床细胞分子遗传学专业),预计年检样本数量 150000 个,涉及建筑面积 700m²。 项目总投资 500 万元,其中环保投资 30 万元,占总投资的 6%。

- 二、经审查,该项目符合国家产业和地方规划。西安经济技术开发区管委会出具了《关于西安凯普医学检验所有限公司西安凯普医学检验所项目备案的通知》(西经开发〔2016〕392号〕。项目在全面落实报告表中提出的各项污染防治措施后(包含报告表中的要求和建议)环境不利影响能够得到一定程度的缓解和控制,从环境保护的角度,我局同意按照报告表中所列建设项目的地点、性质、规模及环境保护措施进行项目建设。在项目设计、建设过程中和投入运行后,应重点做好以下工作:
- (一)该项目必须按国家标准规范和报告表结论、建议及要求中提出的污染防治措施和治理方案要求建设污染处理设施,以确保所有污染物达标排放。
- (二)项目医疗污水经一体式处理工艺预处理后与生活污水依托园区化粪池处理,满足《黄河流域(陕西段)污水综合排放标准》(DB/224-2011)二级标准后处理后,经市政管网进入第四污水处理厂。项目实验污水和实验场地拖洗污水经收集后交由有资质单位处置。
- (三)实验室产生的废气经通风橱抽风系统收集后通过活性炭吸附处理,满足《大气污染物综合排放标准》(GB16297-1996)中二级标准限值要求后,由不低于 15 米高的排气筒引至楼顶排放。
- (四)项目产生的废实验样本、实验室废液、废活性炭等危险废物严格按照《危险废物贮存污染控制标准》(GB18597-2001)、《危险废物转移联单管理办法》和《危险废物收集、贮存、运输技术规范》(HJ2025-2012)要求,对其规范化收集、临时贮存和送有资质的单位处置。生活垃圾由环卫部门集中处置。
- 三、项目须严格执行配套建设的环境保护设施与主体工程同时设计、同时施工、同时投入使用的环境保护"三同时"制度,落实各项环境保护措施。
- 四、项目竣工后,你单位须按规定程序向我局申请办理建设项目竣工环境保护验收手续,经验收合格方可正式投入使用。

西安市环境保护局经济技术开发区分局 2016年12月15日

表五 验收监测质量保证及质量控制:

质量保证和质量控制

严格按照国家生态环境部发布的《环境监测技术规范》、《空气和废气监测质量保证手册》、依据《环境监测质量管理技术导则》(HJ630-2011)、《建设项目环境保护设施竣工验收监测技术要求》中质量控制与质量保证有关章节要求进行。

- 1、废气监测严格按照《固定源废气监测技术规范》(HJ/T397-2007)、《大气污染物无组织排放监测技术导则》(HJ/T55-2000)进行。其中监测前、后,按规定对采样系统的气密性进行检查,对使用的仪器进行流量校准。
 - 2、所有监测人员持证上岗,严格按照本公司质量管理体系文件中的规定开展工作。
 - 3、所用监测仪器通过计量部门检定、校准合格,并在有效期内。
- 4、各类记录及分析测试结果,按相关技术规范要求进行数据处理和填报,并进行 三级审核。
 - 5、监测期间,生产工况符合验收要求及环保设施正常运行。
- 6、按标准规范设置监测点位、确定了监测因子与频次,保证监测数据具有科学性 和代表性。
- 7、厂界噪声监测按照《工业企业厂界环境噪声排放标准》(GB12348-2008)中的规定进行,噪声分析仪测量前、后在监测现场进行校准,示值偏差不大于 0.5 分贝。

表六 验收监测内容、分析方法及监测工况

6.1 验收监测内容

表 6-1 监测点位、项目、频次

类别	监测点位	监测项目	监测频次
有组织 废气	实验室东侧处理设施 进、出口 实验室西侧处理设施 进、出口	氯化氢、非甲烷总烃	监测2天, 每天3次。
污水	医疗污水处理站出口	pH 值、悬浮物、氨氮、化学需 氧量、五日生化需氧量、总余氯、 粪大肠菌群	监测2天, 每天4次。
无组织 排放	厂界上风向1个监控点,下风 向设3个监控点	氯化氢、非甲烷总烃	监测 2 天, 每天 4 次。
厂界噪声	厂界东、南、西、北外 1m 处 各设置 1 个,共 4 个监测点	等效连续 A 声级	监测 2 天, 昼间 1 次。

6.2 监测分析方法

表 6-2 监测方法检出限

类别	监测项目	分析方法	检出限
有组织	非甲烷总烃	《固定污染源废气 总烃、甲烷和非甲烷总 烃的测定 气相色谱法》HJ 38-2017	0.07mg/m^3
废气	氯化氢	《固定污染源排气中氯化氢的测定 硫氰酸汞分光光度法 》HJ/T 27-1999	0.9mg/m^3
无组织	氯化氢	《固定污染源排气中氯化氢的测定 硫氰 酸汞分光光度法 》HJ/T 27-1999	0.05mg/m^3
排放	非甲烷总烃	0.07mg/m^3	
	pH 值	《水质 pH 值的测定 玻璃电极法》 GB/T 6920-1986	/
	悬浮物	《水质 悬浮物的测定 重量法》 GB/T 11901-1989	4mg/L
	化学需氧量	《水质 化学需氧量的测定 重铬酸盐法》 HJ 828-2017	4mg/L
污水	氨氮	《水质 氨氮的测定 纳氏试剂分光光度 法》HJ 535-2009	0.025mg/L
	五日生化 需氧量	《水质 五日生化需氧量(BOD ₅)的测定 稀释与接种法》HJ 505-2009	0.5mg/L
	粪大肠菌群	《水质 粪大肠菌群的测定 多管发酵法》 HJ/T 347.2-2018	20MPN/L
	总余氯	《水质 游离氯和总氯的测定 N,N-二乙基-1.4-苯二胺分光光度法》 HJ 586-2010 附录 A	0.04mg/L
厂界噪声	等效连续 A 声级	《工业企业厂界环境噪声排放标准》 GB12348-2008	/

6.3 所用监测仪器及编号

表 6-3 主要监测设备仪器一览表

	衣 6-3 土妛出	测设备仪器一览表	
监测项目	仪器名称及型号	仪器编号	检定/校准部门 与有效日期
	YQ3000-D 大流量烟尘 (气) 测试仪	CZHB145	陕西国华现代测控技术有 限公司 2022-3-1
氯化氢、	YQ3000-D 大流量烟尘 (气)测试仪	CZHB190	陕西力源仪器设备检测有 限公司 2021-8-14
非甲烷总烃	MH1200 型全自动大气/颗 粒物采样器	CZHB177	陕西协成测试技术有限公司 2021-8-3
	ZR-3710 双路烟气采样器	CZHB127	陕西国华现代测控技术有 限公司 2021-6-7
非甲烷总烃	G5 型气相色谱仪	CZHB007	陕西国华现代测控技术有 限公司 2022-11-14
氯化氢	MH1205 型恒温恒流大气/ 颗粒物采样器	CZHB206 CZHB207 CZHB208 CZHB209	陕西国华现代测控技术有 限公司 2022-3-15
厂界噪声	HS6226 型多功能声级计	CZHB130	陕西省计量科学研究院 2021-5-21
) が米尸	HS6020 型声级校准器	CZHB131	陝西省计量科学研究院 2021-4-13
pH 值	DZB-718L 型便携式多参数分析仪	CZHB219	陕西省计量科学研究院 2021-5-27
悬浮物	FA1004 电子天平	CZHB046	陕西国华现代测控技术有 限公司 2021-11-14
总 仔彻	GZX-9240MBE 型电热鼓 风干燥箱	CZHB027	陕西国华现代测控技术有 限公司 2021-11-14
氯化氢	722S 可见分光光度计	CZHB004	陕西国华现代测控技术有 限公司 2021-11-14
氨氮	722S 可见分光光度计	CZHB003	陕西国华现代测控技术有 限公司 2021-11-14
化学需氧量	酸式滴定管	CZHB-QT-080	陕西国华现代测控技术有 限公司 2024-3-1
五日生化需	QDSH-80 型智能生化培养 箱	CZHB034	陕西国华现代测控技术有 限公司 2021-11-14
氧量	JPSJ-605F 型溶解氧仪	CZHB044	陕西国华现代测控技术有 限公司 2021-11-14
米上四芒型	QDSH-80 智能生化培养 箱	CZHB033	陕西国华现代测控技术有 限公司 2021-11-14
粪大肠菌群	YXQ-LS-18S I 手提式压 力蒸汽灭菌器	CZHB099	陕西国华现代测控技术有 限公司 2021-11-14
总余氯	DGB-403F 便携式余氯/总 氯/二氧化氯测定仪	CZHB211	陕西省计量科学研究院 2021-4-13

6.4 监测人员上岗

表 6-4 监测人员上岗一览表

	-рс - ш	1047 474 TO 10-104	
姓名	王雪健	李红亮	许坤
上岗证号	SXQCA-H17327	SXQCA-H19286	SXQCA-H17231
姓名	王浩祥	净凯博	雷腾
上岗证号	CZHB-1130	SXQCA-H19279	CZHB-1129
姓名	惠阳博	杨蕊	张雪莉
上岗证号	CZHB-1319	SXQCA-H19280	CZHB-1331
姓名	郭亚娟	刘志玲	刘思怡
上岗证号	CZHB-1332	CZHB-1203	CZHB-1124

6.5 质量保证与质量控制

表 6-5 厂界噪声校准一览表

HS6226 型多功能声级计校准情况(CZHB130)

监测时间	校准仪值 dB(A)	监测 前后	仪器读数 dB(A)	示值偏差 dB(A)	允许偏差 dB(A)	校准 结论
4月7日	94.0	前	93.8			合格
4月7日	94.0	后	93.7	-0.1	±0.5	口 作
4 H 9 D	94.0	前	93.8	0.0	10.5	合格
4月8日		后	93.8	0.0	±0.5	

表 6-6 废气校准一览表

MH1205 型恒温恒流大气/颗粒物采样器校准情况

气路	仪器编号	流量设定值	标准流量	量 计读数	示值 (±5.	是否	
名称 	人	加重权之由	使用前	使用后	使用前	使用后	合格
A路(mL/min)	CZHB206	1000	998.4	997.1	-0.2	-0.3	合格
	CZHB207	1000	997.1	994.2	-0.3	-0.6	合格
	CZHB208	1000	995.5	993.9	-0.5	-0.6	合格
	CZHB209	1000	996.6	998.8	-0.3	-0.1	合格

		续表 6-6	废气校准	一岁	危表			
	MH	1200 型全自动力	大气/颗粒物	采村	羊器校准	情况		
气路	仪器编号	流量设定值	标准流量	量计	读数		:值误差 ±2.5%)	是否
名称	IX TILL FING J	加里久之區	使用前	使	用后	使用前	使用后	合格
A路 (mL/min)	CZHB177	500	498.4	4	497.6 -0.3		0.5	合格
	YQ	3000-D 大流量/	烟尘(气)	测记	【仪校准	情况		
仪器编号	流量设定值	标准流量 (L/n				示值。 (±2.5		是否
, , , , , , , , , , , , , , , , , , ,	(L/min)	使用前	使用后		使用	前	使用后	合格
	20.0	19.9	19.9		-0.	5	-0.5	合格
CZHB190	30.0	29.8	29.9		-0.	7	-0.3	合格
CZHB190	40.0	39.6	39.8		-1.0		-0.5	合格
	50.0	49.6	49.5		-0.8		-1.0	合格
	20.0	20.0	20.1		0.0	0.0		合格
CZUD145	30.0	29.8	29.8	29.8 -0.		7	-0.7	合格
CZHB145	40.0	39.8	39.6		-0.	5	-1.0	合格
	50.0	49.5	49.6		-1.	0	-0.8	合格
		ZR-3710 型双	路烟气采样	器材	注性情况			
气路	仪器编号	流量设定值	标准流量	量计	读数		长值误差 ±2.5%)	是否
名称	八人的 州 勺	加重权人由	使用前	ſ	吏用后	使用育	前 使用后	合格
A路 (mL/min)	CZHB127	500	496.2		497.7	-0.8	-0.5	合格
		表 6-7 水质	质质量控制	训一	览表			
		质量控制	措施(标准	样品	4)			
	14.55	1-10.13			质控	结果		是否
序号	检测项目	标准样品	测定结点 (mg/L)			标准值 (mg/L)		合格
1	氨氮	2005134	4.509		4.46		±0.23	合格
2	化学需氧量	201148	59		57	7.0	±4.3	合格

6.6 监测工况

2021年4月7日~8日,对厂区进行了竣工环保验收现场监测,验收监测期间正常生产,各项环保设施运转正常。

表 7 监测结果

7.1 有组织废气监测结果

表 7-1

				有	组织废气监测	结果					
	监测	则点位	实验室东	下侧处理设施运	进、 出口	进口监测断	面尺寸(m)	D=0.30	排气筒高度	(m)	15
	处理	里设施		活性炭吸附		出口监测断面尺寸(m) D=0.30			11年【同同及	(III)	13
	监测	则时间	2021年4月7日			2	2021年4月8日			标准	是否
	监测	则频次	第1次	第2次	第 3 次	第1次	第2次	第3次	最大值	限值	达标
	/	含湿量 (%)	1.4	1.5	1.3	1.4	1.3	1.3	/	/	/
	排	气温度(℃)	20	19	19	18	20	20	/	/	/
	ì	流速(m/s)	6.0	6.0	6.0	6.1	6.0	6.1	/	/	/
进口		F流量(m³/h)	1357	1358	1361	1382	1356	1378	/	/	/
ZI H	氯化氢	实测浓度(mg/m³)	6.8	8.4	7.6	6.6	7.3	8.2	8.4	/	/
	然口工	速率(kg/h)	9.23×10 ⁻³	1.14×10 ⁻²	1.03×10 ⁻²	9.12×10 ⁻³	9.90×10 ⁻³	1.13×10 ⁻²	1.14×10 ⁻²	/	/
	非甲烷	实测浓度(mg/m³)	22.2	23.5	21.8	23.7	22.6	24.2	24.2	/	/
	草烃	速率(kg/h)	0.030	0.032	0.030	0.033	0.031	0.033	0.033	/	/
	/ F	含湿量 (%)	1.2	1.2	1.2	1.3	1.3	1.3	/	/	/
	排	气温度(℃)	18	18	18	19	19	18	/	/	/
	រុំ	流速(m/s)	6.3	6.4	6.5	6.2	6.4	6.5	/	/	/
	标日	F流量(m³/h)	1430	1451	1471	1403	1445	1468	/	/	/
出口		排放浓度(mg/m³)	3.5	2.7	2.1	3.3	2.5	3.6	3.6	100	达标
山口	氯化氢	排放速率(kg/h)	5.01×10 ⁻³	3.92×10 ⁻³	3.09×10 ⁻³	4.63×10 ⁻³	3.61×10 ⁻³	5.28×10 ⁻³	5.28×10 ⁻³	0.26	达标
		去除效率(%)	45.8	65.7	70.1	49.2	63.5	53.2	/	/	/
	-네- ㅁ 네-	排放浓度(mg/m³)	7.20	6.24	5.81	6.11	6.34	7.01	7.20	120	达标
	非甲烷	排放速率(kg/h)	0.010	0.009	0.009	0.009	0.009	0.010	0.010	10	达标
	总烃	去除效率(%)	65.8	71.6	71.2	73.8	70.1	69.1	/	/	/

由表中数据可知:监测期间,实验室东侧处理设施出口中氯化氢最大排放浓度 3.6mg/m³,排放速率为 5.28×10⁻³kg/h,非甲烷总烃最大排放浓度为 7.20mg/m³,排放速率为 1.03×10⁻²kg/h,均符合《大气污染物综合排放标准》(GB16297-1996)表 2 中标准限值,氯化氢去除效率为 45.8%~70.1%,非甲烷总烃去除效率为 65.8%~73.8%。

					组织废气监测	 结果					
	监测		实验室团	5侧处理设施;	进、出口	进口监测断面尺寸(m)		D=0.30	排气筒高度(m)		1.5
	处理	里设施	活性炭吸附			出口监测断	面尺寸 (m)	D=0.30	排气同局度	(m)	15
	监》	则时间	20	021年4月7	Image: control of the	2	021年4月8	日	最大值	标准	是否
	监测	则频次	第1次	第 2 次	第 3 次	第1次	第 2 次	第 3 次	取入徂	限值	达标
	į	含湿量 (%)	1.4	1.3	1.3	1.3	1.3	1.4	/	/	/
	排	气温度(℃)	19	19	20	19	21	20	/	/	/
	ì	流速(m/s)	5.4	5.4	5.3	5.3	5.2	5.4	/	/	/
进口	标二	F流量(m³/h)	1221	1222	1195	1197	1167	1218	/	/	/
近口	氯化氢	实测浓度(mg/m³)	6.9	7.3	7.0	8.0	7.2	6.6	8.0	/	/
	录(化全)	速率(kg/h)	8.42×10 ⁻³	8.92×10 ⁻³	8.37×10 ⁻³	9.58×10 ⁻³	8.40×10 ⁻³	8.04×10 ⁻³	9.58×10 ⁻³	/	/
	非甲烷	实测浓度(mg/m³)	26.4	24.7	25.2	23.7	24.8	25.1	26.4	/	/
	总烃	速率(kg/h)	0.032	0.030	0.030	0.028	0.029	0.031	0.032	/	/
	-2	含湿量 (%)	1.4	1.4	1.4	1.3	1.3	1.3	/	/	/
	排	气温度(℃)	19	20	20	19	19	18	/	/	/
	3	流速(m/s)	5.9	5.9	6.0	6.2	6.4	6.5	/	/	/
	标=	F流量(m³/h)	1315	1312	1335	1403	1445	1468	/	/	/
出口		排放浓度(mg/m³)	3.3	2.5	3.4	3.6	2.6	3.2	3.6	100	达标
山口	氯化氢	排放速率(kg/h)	4.34×10 ⁻³	3.28×10 ⁻³	4.54×10 ⁻³	5.05×10 ⁻³	3.76×10 ⁻³	4.70×10 ⁻³	5.05×10 ⁻³	0.26	达标
		去除效率(%)	48.5	63.2	45.7	47.3	55.3	41.6	/	/	/
		排放浓度(mg/m³)	7.64	8.42	5.88	6.54	6.28	7.11	8.42	120	达标
	非甲烷 总烃	排放速率(kg/h)	0.010	0.011	0.008	0.009	0.009	0.010	0.011	10	达标
	心圧	去除效率(%)	68.8	63.4	73.9	67.7	68.6	65.9	/	/	/

由表中数据可知:验收监测期间,实验室西侧处理设施出口中氯化氢最大排放浓度 3.6mg/m³,排放速率为 5.05×10⁻³kg/h,非甲烷总烃最大排放浓度为 8.42mg/m³,排放速率为 0.011kg/h,均符合《大气污染物综合排放标准》(GB16297-1996)表 2 中标准限值,氯化氢去除效率为 41.6%~63.2%,非甲烷总烃去除效率为 63.4%~73.9%。

7.2 无组织监测结果

验收监测期间,对项目厂界无组织排放进行了监测,监测结果见表 7-3。

表 7-3

衣 /-3			组织排放		单位:	mg/m ³		
监测	监测		氯化		监测	非甲烷		
时间	点位	监测时间	测定值	平均值	时间	总烃	经纬度	
		9:00~10:00	0.08		9:00	0.97		
	1月11大松上	11:00~12:00	0.08	0.07	11:00	1.04	E109°0′48.08″	
	1#监控点	14:00~15:00	0.06	0.07	14:00	1.07	N34°31′3.91″	
		17:00~18:00	0.07		17:00	1.02		
		9:00~10:00	0.06		9:03	1.38		
	2.川大松 上	11:00~12:00	0.07	0.00	11:03	1.40	E109°0′45.92″	
4	2#监控点	14:00~15:00	0.11	0.08	14:04	1.46	N34°31′3.64″	
	月	17:00~18:00	0.07		17:03	1.22		
7		9:00~10:00	0.09		9:05	1.31		
日	2.川大松 上	11:00~12:00	0.10	0.00	11:08	1.15	E109°0′45.99″	
	3#监控点	14:00~15:00	0.08	0.09	14:07	1.32	N34°31′3.18″	
		17:00~18:00	0.09		17:08	1.43		
		9:00~10:00	0.08		9:13	1.27		
		11:00~12:00	0.11	0.10	11:12	1.22	E109°0′46.71″	
	4#监控点	14:00~15:00	0.10	0.10	14:13	1.37	N34°31′2.97″	
		17:00~18:00	0.09		17:13	1.44		
		9:00~10:00	0.09		9:00	1.02		
	1 111111111111111111111111111111111111	11:00~12:00	0.08	0.00	11:00	0.93	E109°0′48.08″ N34°31′3.91″	
	1#监控点	14:00~15:00	0.07	0.08	14:00	1.01		
		17:00~18:00	0.08		17:00	0.89		
		9:00~10:00	0.09		9:04	1.18		
	ault to E	11:00~12:00	0.10	0.10	11:04	1.25	E109°0′45.92″	
	2#监控点	14:00~15:00	0.11	0.10	14:05	1.33	N34°31′3.64″	
4		17:00~18:00	0.08		17:04	1.27		
月		9:00~10:00	0.10		9:09	1.35		
8 日	2 11111E 122 E	11:00~12:00	0.09	0.10	11:10	1.20	E109°0′45.99″	
	3#监控点	14:00~15:00	0.11	0.10	14:10	1.43	N34°31′3.18″	
		17:00~18:00	0.09		17:09	1.32		
		9:00~10:00	0.08		9:16	1.37		
		11:00~12:00	0.10		11:17	1.18		
	4#监控点	14:00~15:00	0.08	0.09	14:15	1.35	E109°0′46.71″ N34°31′2.97″	
		17:00~18:00	0.10		17:16	1.48	1134 31 4.97	
		9:00~10:00	0.09		9:00	1.02	1	
	最大值			0.10	/	1.48	/	
	标准限		/	0.20	/	4.0	/	

由以上监测数据可知:验收监测期间,厂界无组织监控点非甲烷总烃的监控点浓度最大值为 1.48mg/m³,氯化氢的监控点平均浓度最大值为 0.10mg/m³,均符合《大气污染物综合排放标准》(GB16297-1996)表 2 中标准限值。

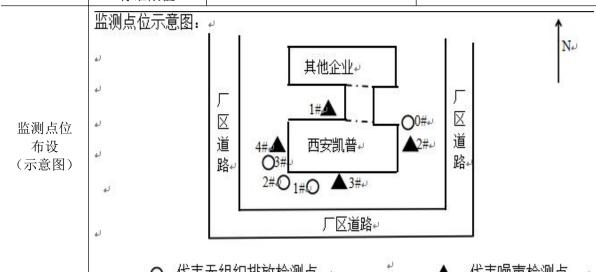
续表 7-3 监测期间气象参数

监测	日期		2021年		7911°3 (2 <u>3</u>		2021年	4月8日	
项目、时间	i测点位	0#监控 点	1#监控 点	2#监控 点	3#监控 点	0#监控 点	1#监控 点	2#监控 点	3#监控 点
	9:00	18.3	18.2	18.2	18.2	17.8	17.7	17.7	17.7
气温	11:00	20.6	20.6	20.5	20.4	21.3	21.4	21.4	21.4
(℃)	14:00	25.5	25.4	25.5	25.6	24.6	24.5	24.5	24.5
	17:00	22.4	22.4	22.4	22.3	23.2	23.2	23.3	23.1
	9:00	97.9	97.9	97.9	97.9	97.9	97.9	97.9	97.9
气压	11:00	97.7	97.7	97.7	97.7	97.7	97.9	97.7	97.7
(kPa)	14:00	97.5	97.5	97.5	97.5	97.6	97.7	97.6	97.6
	17:00	97.6	97.6	97.6	97.6	97.6	97.6	97.6	97.6
	9:00	1.7	1.6	1.6	1.7	1.9	1.9	2.0	1.9
风速	11:00	1.9	1.9	1.8	1.8	2.3	2.4	2.3	2.4
(m/s)	14:00	2.1	2.0	1.9	1.8	2.4	2.4	2.4	2.3
	17:00	2.0	1.9	1.8	2.0	2.2	2.1	2.1	2.1
	9:00	60	60	60	60	60	60	60	60
风向	11:00	60	60	60	60	60	60	60	60
(°)	14:00	60	60	60	60	60	60	60	60
	17:00	60	60	60	60	60	60	60	60

7.3 污水监测结果

表 7-4

W 201 00 Ho	W. N. L. L.		医疗废	水站出口监测结界	Ę	单位: mg/L (除 pH 值、粪大肠菌群)			
监测日期	监测时间	pH 值(无量纲)	悬浮物	氨氮	化学需氧量	五日生化需 氧量	粪大肠菌群 (MPN/L)	总余氯	
	9:17	7.93	4	3.087	104	22.4	1.7×10 ²	0.88	
4 日 7 日	11:13	8.04	4	2.993	93	21.9	2.0×10 ²	0.93	
4月7日	14:13	8.14	7	3.034	113	22.1	2.4×10 ²	0.77	
	16:25	8.56	5	2.964	108	21.8	2.1×10 ²	0.63	
日	均值	7.93~8.56	5	3.020	104	22.0	/	0.80	
	9:35	8.54	5	2.922	124	23.4	2.7×10 ²	0.93	
4 日 0 日	11:55	8.49	6	2.916	115	23.3	2.5×10 ²	1.05	
4月8日	14:37	8.64	5	2.993	109	22.5	2.1×10 ²	0.74	
	17:46	8.71	7	2.940	132	21.9	2.0×10 ²	0.59	
日	均值	8.49~8.71	6	2.954	120	22.8	/	0.83	
排方	女标准	6~9	60		250	100	5000	/	


由表中数据得出:验收监测期间,本次所采样品中,pH值、氨氮、化学需氧量、五日生化需氧量、悬浮物、粪大肠菌群检测结果均符合《医疗机构水污染物排放标准》(GB18466-2005)中表 2 的预处理排放标准。

7.4 噪声监测结果

表 7-5 噪声监测结果一览表

单位: dB(A)

	监测日期 监测点位	昼间			
		2021年4月7日	2021年4月8日		
	厂界北侧	49	50		
监测结果	厂界东侧	50	51		
	厂界南侧	55	55		
	厂界西侧	51	51		
	标准限值	65	65		

O: 代表无组织排放检测点。4

▲: 代表噪声检测点。↓

由表中数据可知:验收监测期间,厂界环境噪声昼间监测结果 49~55dB(A),均 符合《工业企业厂界环境噪声排放标准》(GB12348-2008)中3类标准限值要求。

7.5 固体废物调查结果

固体废物主要为生活垃圾和医疗废物、实验废液、污水站污泥、废石英砂、废活性 炭,废气治理产生的废活性炭和废过滤网,产生及处置具体内容见表 7-6。

表 7-6	固体废物产生及处置一览表	₹
~× /-U	四件及7011 土及发目 见农	ĸ.

序号	固废名称	形态	固体废 物类别	废物 代码	产生量 (t/a)	处置去向
1	医疗废物	固态	医疗废物	,	1.41	定期由西安卫达实业
2	实验废液	液态	[] [] [] [] [] [] [] [] [] []	, ,	2.1	发展有限公司处置;
3	污泥、废石英砂、废活性炭	固态	危险废物	HW49	0.086	定期委托陕西领凡环
4	废活性炭、废过滤网	固态		H W 49	0.04	保工程有限公司处置
5	职工生活	固态	一般固废	/	6	集中收集,交由环卫 部门统一处理

7.6 污染物排放总量核算
医疗污水排入一体化污水处理设备("调节池+砂滤罐+碳滤罐+消毒+过滤+反渗
透")处理后同生活污水一起排入园区污水处理设施处理,最终排入泾渭新城污水处理
厂。本项目污水依托园区一体化污水处理设施处理,一体化污水处理设施设施为园区各
企业共用,污水监测结果不足以代表本企业污水排放情况,本项目无法计算总量。

表 8 环境管理检查及批复落实

8.1 项目执行国家建设项目环境管理制度情况

(1) 项目"三同时"落实情况

环评情况: 2016年6月2日,该项目取得陕西省卫生计生委关于同意设置西安凯普医学检验所的批复(陕卫医发〔2016〕79号); 2016年11月1日,该项目取得西安经济技术开发区管理委员会关于西安凯普医学检验所有限公司西安凯普医学检验所建设项目备案的通知(西经开发〔2016〕392号); 2016年8月,西安凯普医学检验所有限公司委托中辉囯环(北京)科技发展有限公司编制完成了《西安凯普医学检验所建设项目环境影响报告表》; 2016年12月15日,西安市环境保护局经济技术开发区分局以(经开环批复〔2016〕195号)文对该项目予以批复。

环保施工:项目实际建设,实验室废气,经实验室排放系统引至楼顶经活性炭吸附装置+15m高排气筒;医疗污水经医疗污水处理设施处理后与生活污水一起排入园区污水处理设施处理,最终排入泾渭新城污水处理厂;医疗废物建设医疗废物暂存间、生活垃圾配备垃圾桶,各项环保设施均正常运行。

经检查,项目建设过程中已严格执行主体工程与环保工程同时设计、同时施工、同时投入使用的"三同时"制度。项目已建成,各项环境保护措施已落实,具备建设项目竣工环境保护验收条件,项目"三同时"竣工验收清单见表 8-1。

表 8-1 竣工验收清单

类别	主要污染物	环保设施/措施	执行标准	落实情况
废气处理	氯化氢、恶臭 气体、异丙醇	实验废气、污水 处理设备恶臭气 体,项目实验室 设置有二级生物 安全柜及活性炭 净化装置、配套 通风设施等	氯化氢排放执行 GB16297-1996《大气污染物综合排放标准》二级标准;污水处理系统周边空气中污染物应满足 GB18466-2005《医疗机构水污染物排放标准》中表3相关要求;异丙醇排放参照执行GBZ2.1-2007《中华人民共和国国家职业卫生标准-工作场所有害因素职业接触限制化学有害因素》中表1空气中化学物质容许浓度。	己落实
污水处理	COD、BOD₅ SS、氨氮 粪大肠菌群、 总余氯	医疗污水项目区 设置一套医疗污 水处理系统对检 测污水进行预处 理	生活污水满足 GB8978-1996《污水综合排放标准》三级标准; 医疗污水排放执行 GB18466-2005《医疗机构水污染物排放标准》表 2 中预处理标准	己落实
噪声 治理	设备噪声	设备基础减震、 隔声窗	GB12348-2008《工业企业厂界环境噪声排放标准》中3类标准	己落实

由表中可知,本次验收期间,需监测废气异丙醇、污水处理周边恶臭气体,因本项目污水处理规模小,且污水处理设施位于实验室内,产生的恶臭对周边影响极小,故未监测污水处理周边恶臭。异丙醇监测需在实验室内监测,且参照执行《中华人民共和国国家职业卫生标准-工作场所有害因素职业接触限制化学有害因素》标准,属于公共卫生场所领域,根据实际情况对本项目监测因子进行调整,监测因子为非甲烷总烃,且达到《大气污染物综合排放标准》(GB16297-1996)中相关标准限值要求。

(3) 环境管理制度建立情况执行和落实情况

经检查,西安凯普医学检验所有限公司建立环境保护管理制度,设置兼职人员负责环境管理和监督,做好污染控制和生态环境保护工作,负责有关措施的落实,对项目废气、噪声、固体废物、污水等的处理、排放及环保设施运行状况进行监督,严格注意相关排污情况,以便能够在出现异常或紧急情况时采取应急措施等内容。

8.2 监测手段及人员配置

根据《排污单位自行监测技术指南 总则》(HJ819-2017),建设单位委托第三方 检验检测机构定期对厂区污染源进行监测,具体监测内容见表8-1。

类别	监测点位	监测项目	监测频次			
有组织	实验室东侧处理设施 进、出口	氯化氢、非甲烷总烃	1 季度/1 次			
废气	实验室西侧处理设施 进、出口	就化 会、				
污水	医疗污水处理站出口	pH 值、悬浮物、氨氮、化学需氧量、五日生化需氧量、 总余氯、粪大肠菌群	1 年/1 次			
	污水总排口	pH 值、悬浮物、氨氮、化学需氧量、五日生化需氧量	1 4/1 ()			
无组织 排放	厂界上风向 1 个监控点,下风向 设 3 个监控点	氯化氢、非甲烷总烃	1 年/1 次			
厂界噪声	厂界东、南、西、北外 1m 处各 设置 1 个,共 4 个监测点	等效连续 A 声级	1 季度/1 次			

表 8-2 监测计划一览表

8.3 是否发生扰民和污染事故

根据调查,项目运营至今,未发生扰民现象和环境事件。

8.4 环评、批复措施落实情况

表 8-3 环评批复、环评结论建议落实情况一览表

表 8-3						
类别 	环评结论	环评批复提出的 防治措施	落实情况			
废气	本项目生产运营过程中 主要废气污染物包括实 验废气和污水处理设备 恶臭气体,厂房设置生 物安全柜,废气通过柜 内高效过滤器过滤及活 性炭吸附净化装置净化 后,进入排风系统由排 气口高空排放,	实验室产生的废气经通风橱抽风系 统收集后通过活性炭吸附处理,满 足《大气污染物综合排放标准》 (GB16297-1996)中二级标准限值 要求后,由不低于15米高的排气筒 引至楼顶排放。	样本提取过程产生微生物气溶胶废气,提取在生物安全柜中进行,处理后经排放系统排出;实验室挥发性废气、恶臭废气经换风引至实验楼内置管道,由实验楼楼顶活性炭吸附净化装置处理后,经15m高排气筒排放。			
固废	项目生产中产生职工生 活垃圾交由环卫部门处 理; 医疗废物,实验废 液,污水处理产生的污 泥、废石英砂、废活性 炭,废气治理产生的废 过滤网、废活性炭等属 于危险废物,收集交有 资质单位处理。	项目产生的废实验样本、实验室废液、废活性炭等危险废物严格按照《危险废物贮存污染控制标准》(GB18597-2001)、《危险废物转移联单管理办法》和《危险废物收集、贮存、运输技术规范》(HJ2025-2012)要求,对其规范化收集、临时贮存和送有资质的单位处置。生活垃圾由环卫部门集中处置。	生活垃圾:分类收集于垃圾桶,由环卫部物、收集门次等物、由环卫部物、实力类的人类的人类的人类的人类的人类的人类的人类的人类的人类的人类的人类的人类的人类			
污水	医疗污水经一体式处理 工艺预处理达标后,同 生活污水一起排入园区 化粪池,处理工艺为"调 节池+砂滤罐+碳滤罐+ 消毒+过滤+反渗透"; 生活污水依托园区化粪 池处理达标后经市政管 网排入泾渭新城污水处 理站处理。	项目医疗污水经一体式处理工艺预处理后与生活污水依托园区化粪池处理,满足《黄河流域(陕西段)污水综合排放标准》(DB/224-2011)二级标准后处理后,经市政管网进入第四污水处理厂。项目实验污水和实验场地拖洗污水经收集后交由有资质单位处置。	医疗污水排入一体化污水处理设备("调节池+砂滤罐+碳滤罐+消毒+过滤+反渗透")处理后同生活污水一起排入园区污水处理设施处理,最终排入泾渭新城污水处理厂。			
噪声	项目尽量选用医用低噪声设备,室内设备噪声经基础减振、厂房隔音,厂界噪声可达到GB12348-2008《工业企业厂界环境噪声排放标准》中的3类区排放限值。	必须按环评《报告表》提出的要求和建议,噪声采取设备位于厂房内,并采取隔声、基础减振等措施,确保厂界噪声达到《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准。	实验室设备安装减震 垫,实验室及办公室采 用隔声效果好的隔声门 窗,墙体采用吸声材料。			

8.5 项目投资

项目环保投资具体见表 8-3。

表 8-3 项目环保投资一览表

项目名称	环保设施/措施	数量	环评费用 (万元)	实际费用 (万元)
废气治理 设施	实验废气、污水处理设备恶臭气体,项目实验室设置有二级生物安全柜及活性炭净化装置,配套通风设施等	2套	5	6
污水处理 设施			10	8
噪声治理 设备	高噪声设备基础减振、厂房隔声	若干	4	4
固体废物	生活垃圾,设置生活垃圾桶	若干	1	1
回件及切	危险废物收集装置及暂存间	若干	10	7
	/	30	26	

表 9 验收监测结论及建议

验收监测结论:

验收监测期间,该项目的生产正常企业生产正常稳定,环境保护设施运行正常。

9.1 废气

验收监测期间:实验室东侧处理设施出口中氯化氢最大排放浓度 3.6mg/m³,排放速率为 5.28×10⁻³kg/h,非甲烷总烃最大排放浓度为 7.20mg/m³,排放速率为 0.010kg/h,均符合《大气污染物综合排放标准》(GB16297-1996)表 2 中标准限值,氯化氢去除效率为 45.8%~70.1%,非甲烷总烃去除效率为 65.8%~73.8%;实验室西侧处理设施出口中氯化氢最大排放浓度 3.6mg/m³,排放速率为 5.05×10⁻³kg/h,非甲烷总烃最大排放浓度为 8.42mg/m³,排放速率为 0.011kg/h,均符合《大气污染物综合排放标准》(GB16297-1996)表 2 中标准限值,氯化氢去除效率为 41.6%~63.2%,非甲烷总烃去除效率为 63.4%~73.9%;

验收监测期间:厂界无组织监控点非甲烷总烃的监控点浓度最大值为1.48mg/m³,氯化氢的监控点平均浓度最大值为0.10mg/m³,均符合《大气污染物综合排放标准》(GB16297-1996)表2中标准限值。

9.2 污水

医疗污水排入一体化污水处理设备("调节池+砂滤罐+碳滤罐+消毒+过滤+反渗透")处理后同生活污水一起排入园区污水处理设施处理,最终排入泾渭新城污水处理厂。本项目污水依托园区污水处理设施处理,园区污水处理设施为园区各企业共用,污水监测结果不足以代表本企业污水排放情况,且验收监测期间,污水总排口无水,污水总排口未监测;

验收监测期间: 医疗污水站出口中 pH 值、氨氮、化学需氧量、五日生化需氧量、悬浮物、粪大肠菌群检测结果均符合《医疗机构水污染物排放标准》(GB18466-2005)中表 2 的预处理排放标准。

9.3 厂界噪声

验收监测期间:厂界环境噪声昼间监测结果 49~55dB(A),符合《工业企业厂界环境噪声排放标准》(GB12348-2008)中 3 类标准限值要求。

9.4 固体废物

验收监测期间:生活垃圾:分类收集于垃圾桶,由环卫部门统一清运;医疗废物、实验室废液:分类单独收集,暂存于医废暂存间,定期由西安卫达实业发展有限公司处置;污水站污泥、废石英砂、废活性炭及废过滤网:分类收集暂存于危废暂存间,定期委托陕西领凡环保工程有限公司处置。

建议:

- 1.做好医疗污水处理设施定期检查,确保医疗污水处理设施正常运转;
- 2.做好危废及医疗废物暂存、转运记录。

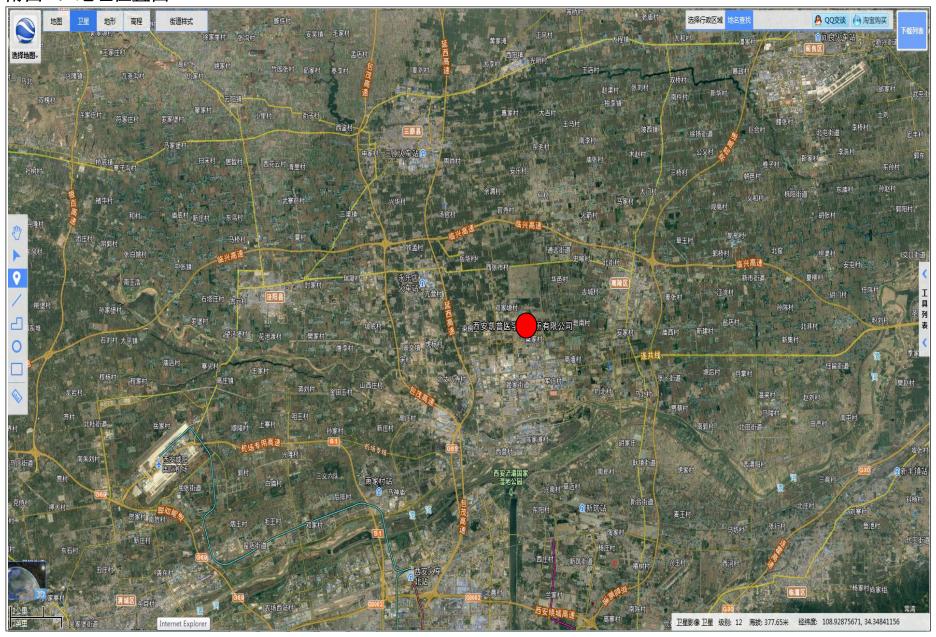
验收监测总结论

西安凯普医学检验所有限公司西安凯普医学检验所建设项目自立项到竣工 投入生产的全过程,能够执行各项环境管理法律法规,重视环保管理,环保机构 及各项管理规章制度比较健全;基本能够落实环评及批复提出的环保对应措施和 建议;环保设施运转正常,管理措施得当,符合国家有关规定和环保管理要求。

该项目经过监测和检查,各项环保设施能够按照环境影响评价的要求建设,项目废气、废水排放浓度、噪声监测结果及固体废物处置措施均符合相应排放标准限值要求,符合验收条件,建议建设项目通过竣工环境保护验收。

建设项目竣工环境保护"三同时"验收登记表

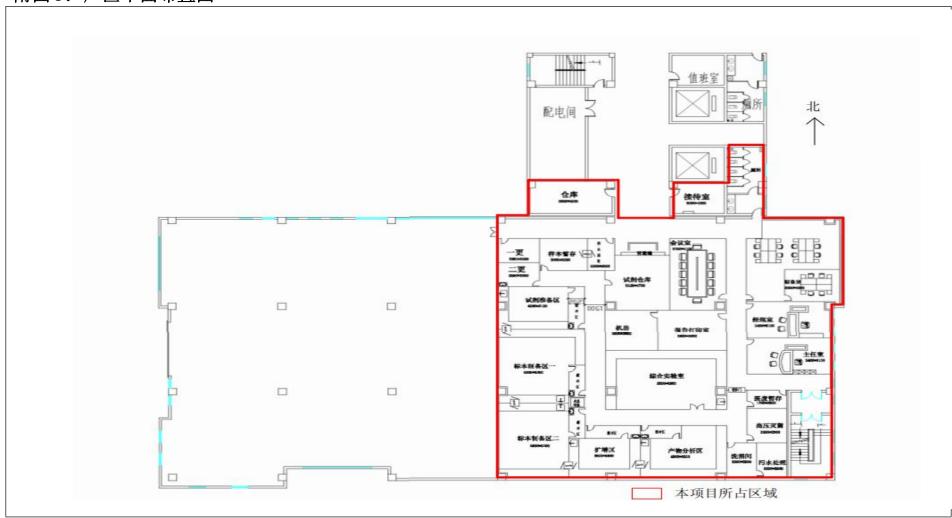
填表单位(盖章):


填表人(签字):

项目经办人(签字):

央4	区里位 (宣皇	F/ •				火イ	ス八 (金子):			项目经分八(金	:1/:			
	项	自名称		西安凯普	音医学检验 戶	所建设项目	1	项目	代码	/	建设地点	西安市组	经济开发区泾渭 号 3 栋 2	新城泾高北路中段 1 02 号
	行业类别(分类管理名录)	其 他	卫生服务(28390		建设	性质	∀新建 □改扩建	□技 术 改 造	项目厂	一区中心经/ 纬度	E109°0′46.85″ N34°31′3.96″
	设计	生产能力		年检科	羊本数量 15	0000 个		实际生	产能力	年 检 样 本 数 量 150000 个	环评单位	中辉	囯环(北京)科	技发展有限公司
	环评文	件审批机关	i	西安市环境保	护局经济技术开发区分局 审			审批	文号	经 开 环 批 复〔2016〕195 号	环评文件类型		环境影响	报告表
建设	开	工日期			/	/			日期	/	排污许可证申领时	计间	/	
项目	环保设	施设计单位						环保设施	施工单位	/	本工程排污许可证	编号	/	
	验收单位			西安凯普医学检验所有限公司				环保设施	监测单位	陕西昌泽环保科技有限公司	验收监测时工资	7.	/	
	投资总概	E 算 (万元)			500			环保投资总	概算(万元)	30	所占比例(%)		6	
	实际总投	と资 (万元)			500			实际环保投	资 (万元)	26	所占比例(%)		5.2	
	污水治	理(万元)	8	废气治理 (万元)	6	噪声治理()	万元) 4	固体废物治	理(万元)	8	绿化及生态(万元	亡) /	其他 (万元)	/
3	新增污水	处理设施能	カ		/		·	新增废气处	理设施能力	/	年平均工作时		2400	h
	运营单	单位			运营单	单位社会统一	一信用代码(或	组织机构代码	马)		验收时间		2021年	4 月
	污	5 染 物	原有排放 量(1)	本期工程实际排放浓度(2)	本期工程允 许排放浓度 (3)	本期工程产生量(4)	本期工程自身削減量(5)	本期工程实际排放量(6)	本期工程 核定排放 总量(7)	本期工程"以新带老"削减量 (8)	全厂实际排放总量(9)	全厂核定排放 总量(10)	区域平衡替代 削减量(11)	排放增减量 (12)
	废	水	/	/	/	/	/	/	/	/	/	/	/	/
>=: >+: #bm		/	/	/	/	/	/	/	/	/	/	/	/	/
污染物 排放达		/	/	/	/	/	/	/	/	/	/	/	/	/
标与总		/	/	/	/	/	/	/	/	/	/	/	/	/
量控制		/	/	/	/	/	/	/	/	/	/	/	/	/
(工业建设项		/	/	/	/	/	/	/	/	/	/	/	/	/
目详		/	/	/	/	/	/	/	/	/	/	/	/	/
填)		/	/	/	/	/	/	/	/	/	/	/	/	/
	-	/	/	/	/	/	/	/	/	/	/	/	/	/
	与项目有关	/	/	/	/	/	/	/	/	/	/	/	/	/
	的其它特征	/	/	/	/	/	/	/	/	/	/	/	/	/
	污染物	/	/	/	/	/	/	/	/	/	/	/	/	/
	4 HI-3-6-1M %	4 - 4 - 4 - 4				(0) (1) (3 11日 ※ />				1. n+/-	L >=	

注: 1、排放增减量: (+) 表示增加, (-) 表示减少 2、(12)=(6)-(8)-(11), (9) = (4)-(5)-(8)- (11) + (1) 3、计量单位: 污水排放量——万吨/年; 废气排放量——吨/年; 工业固体废物排放量——吨/年; 水污染物排放浓度—


附图1: 地理位置图

附件 2: 四邻关系图

附图 3: 厂区平面布置图

陕西省卫生和计划生育委员会文件

陕卫医发 [2016] 79号

陕西省卫生计生委关于同意设置 西安凯普医学检验所的批复

西安市卫生计生委:

你委《关于设置西安凯普医学检验所的请示》(市卫计字 [2016] 11 号) 收悉。经我委审议研究, 同意设置西安凯普医学检验所。审定、核准项目如下:

一、医疗机构名称: 西安凯普医学检验所

二、设置单位:广州凯普医学检验发展有限公司

三、执业地点: 西安市经济开发区泾渭新城泾高北路中段

1号3栋202室

四、机构类别: 医学检验所

五、所有制形式: 私有

六、经营性质: 营利性

七、法定代表人: 林可

八、服务对象: 医疗机构

九、诊疗科目: 医学检验科(临床细胞分子遗传学专业)

十、设置有效期: 自批准之日起12个月

请你委严格依照《医疗机构管理条例》、《医疗机构管理条例 实施细则》、《医学检验所基本标准》等有关医疗机构管理规定办法和标准,指导该院进行建设,配备人员、设施、设备,建立健全相关管理制度、技术操作规范和从业人员职责。建成后,按照属地化管理原则,委托你委依据相关标准、规范办理执业注册登记手续,并加强日常监管。

特此批复。

西安经济技术开发区管理委员会文件

西经开发〔2016〕392号

西安经济技术开发区管委会 关于西安凯普医学检验所有限公司西安 凯普医学检验所项目备案的通知

西安凯普医学检验所有限公司:

你公司报来的《关于西安凯普医学检验所项目备案的申请》 收悉。经审查,该项目符合《陕西省企业投资项目备案暂行办法》 的规定,同意备案并通知(代项目备案确认书)如下:

- 一、同意你公司在西安经济技术开发区建设西安凯普医学检 验所项目。
 - 二、项目总投资约500万元,资金自筹。
 - 三、项目主要内容: 购置相关机器设备,建设西安凯普医学

检验所项目。项目建成后,预计可实现年销售收入约 2000 万元, 年上缴税收约 50 万元。;

四、项目地址位于西安经济技术开发区泾渭中小工业园 3-202号厂房内,租赁面积约1445.36平方米。

五、项目备案有效期2年。

请接文后,分别与经开区管委会经发局和市容环保局等部门 申请办理节能及环评等相关手续,手续完善后方可实施项目。

抄送: 市发改委, 市财政局, 市工商局, 市国税局, 市地税局。

西安经济技术开发区管委会办公室

2016年11月1日印发

西安市环境保护局经济技术开发区分局

经开环批复 [2016] 195号

西安市环境保护局经济技术开发区分局 关于西安凯普医学检验所有限公司西安凯普 医学检验所项目环境影响报告表的批复

西安凯普医学检验所有限公司:

你单位报来的《西安凯普医学检验所项目环境影响报告表》 (以下简称"报告表")收悉。根据国家建设项目有关法律法规及 相关技术规范,结合专家技术评估意见。经审查,批复如下:

- 一、该项目位于西安技术经济开发区泾渭新城泾高北路中段, 主要进行医学检验科(临床细胞分子遗传学专业),预计年检样本 数量 150000 个,涉及建筑面积 700㎡。项目总投资 500 万元,其 中环保投资 30 万元,占总投资的 6%。
- 二、经审查,该项目符合国家产业和地方规划。西安经济技术开发区管委会出具了《关于西安凯普医学检验所有限公司西安凯普医学检验所项目备案的通知》(西经开发〔2016〕392号)。项目在全面落实报告表提出的各项污染防治措施后(包含报告表中的要求和建议)环境不利影响能够得到一定程度的缓解和控制,从环境保护的角度,我局同意按照报告表中所列建设项目的地点、性质、规模及环境保护措施进行项目建设。在项目设计、建设过程中和投入运行后,应重点做好以下工作:

- (一)该项目必须按国家标准规范和报告表结论、建议及要求中提出的污染防治措施和治理方案要求建设污染处理设施,以确保所有污染物达标排放。
- (二)项目医疗废水经一体式处理工艺预处理后与生活废水依托园区化粪池处理,满足《黄河流域(陕西段)污水综合排放标准》(DB61/224-2011)二级标准和《污水综合排放标准》(GB8978-1996)三级标准后处理后,经市政管网进入第四污水处理厂。项目实验废水和实验场地拖洗废水经收集后交由有资质单位处置。
- (三)实验室产生的废气经通风橱抽风系统收集后通过活性 炭吸附处理,满足《大气污染物综合排放标准》(GB16297-1996) 中二级标准限值要求后,由不低于15米高的排气简引至楼顶排放。
- (四)项目应选用低噪声设备,采取隔声、减震等措施,厂 界噪声应满足《工业企业厂界环境噪声排放标准》(GB12348-2008) 3类区标准限值要求。
- (五)项目产生的废实验室样本、实验室废液、废活性炭等 危险废物严格按照《危险废物贮存污染控制标准》 (CB18597-2001)、《危险废物转移联单管理办法》和《危险废物 收集、贮存、运输技术规范》(HJ2025-2012)要求,对其规范化 收集、临时贮存和送有资质的单位处置。生活垃圾由环卫部门集 中处置。
- 三、项目须严格执行配套建设的环境保护设施与主体工程同 时设计、同时施工、同时投入使用的环境保护"三同时"制度, 落实各项环境保护措施。

四、项目竣工后,你单位须按规定程序向我局申请办理建设项目竣工环境保护验收手续,经验收合格方可正式投入使用。

西安市环保局经开分局 2016年12月15日 NO: YY

西安市医疗废物集中处置 委 托 合 同

甲方:_ 阳安如考证存本分裂

乙方: 西安卫达实业发展有限公司 (西安市医疗废物集中处置中心)

西安市医疗废物集中处置 委托合同

甲方:

乙方:西安卫达实业发展有限公司

(西安市医疗废物集中处置中心) (简称处置中心)

为了实现医疗废物集中处置,保障人民群众身体健康,根据《医疗废物管理条例》(国务院令第380号)、《医疗卫生机构医疗废物管理办法》(卫生部令第36号)《医疗废物集中处置技术规范》(环发[2003]206号)、《西安市医疗废物集中处置实施方案》(市政发[2004]135号)、《西安市医疗废物集中处置通告》(市政告字[2004]9号)《军队医疗卫生机构医疗废物管理办法》(中国人民解放军总后勤部命令[2004]后字第14号)的相关规定,甲方与乙方经共同协商,就医疗废物的收集、转运、无害化处置及医疗废物集中处置服务费(简称处置费)的支付、结算等相关问题,订立本合同。

第一条 本合同所称医疗废物是指甲方在医疗、预防、保健 以及其他相关活动中产生的具有直接或者间接感染性、毒性以及 其他危害性的废物;是《医疗废物分类目录》(卫医发[2003]287 号)中所规定的除化学性废物之外的各项医疗废物。

第二条 甲方应严格按照《医疗废物管理条例》、《医疗卫生 机构医疗废物管理办法》和《医疗废物集中处置技术规范》的规 定:将医疗废物进行分类、包装、标注及内部收集,并建立医疗

废物专用暂时贮存仓库,负责医疗废物交接前的内部管理工作。

第三条 乙方应严格按照《医疗废物管理条例》、《医疗废物 集中处置技术规范》及《西安市医疗废物集中处置实施方案》的 规定,按时接收甲方的医疗废物,安全运抵处置中心并进行无害 化处置。

第四条 收费标准

处置费收费标准按《西安市物价局关于医疗废物处置收费标准的复函》(市物函[2004]290号)执行:"对个别门诊量较大床位较少的医疗单位由医疗废物处置中心与产生单位按医疗废物产生量协商确定。

第五条 结算方式

参照《西安市医疗废物集中处置实施方案》: "采取先收后结 的收费结算方式,按照医疗废物产生单位上年度医疗废物产生总 量收取,年终结算时,经双方共同核定医疗废物产生量,实行多 退少补。"结合简便、易操作的原则,具体如下:

(二) 双方商定于2021年第一季度, 根据贵单位提供

(三) 收费方式:-mytt 好

甲、乙双方商定: 乙方于每(月、季度、半年)10日前向 甲方提供上(月、季度、半年)处置费发票,甲方于收到发票后 10日内将处置费支付给乙方。如甲方未按时支付乙方处置费, 乙方有权停止收运、处置甲方的医疗废物,造成医疗废物无法规 范处置的事实,视同甲方违约,一切责任由甲方承担。

第六条 双方责任

甲方责任

- (一) 指定专人负责衔接、配合乙方的收运及处置工作。
- (二)指定专人负责乙方提供的专用包装容器的接收及管理工作;作为乙方处置单位提供专用包装容器实属全国首位,承担着一定的成本费用,甲方应本着厉行节约的原则,节俭使用。如因甲方原因造成损坏或丢失,应照价赔偿:周转桶(240L)420元/只、(50L)200元/只。
- (三)指定专人负责医疗废物的交接工作,按照《医疗废物 集中处置技术规范》填写和保存《危险废物转移联单》(医疗废 物专用)及《医疗废物运送登记卡》。
- (四)暂存仓库应按《医疗废物集中处置技术规范》:"方便 医疗废物装卸、装卸工人及运送车辆的出入"的标准建设,如因 暂存仓库建设不达标造成乙方收运困难,甲方有责任将周转桶运

至方便乙方收运车辆停放、装卸的地方, 以便乙方及时清运。

(五)按时、足额支付处置费。

乙方贵任

- (一) 指定专人负责甲方医疗废物处置的服务工作。
- (二)根据甲方上年度医疗废物产生量提供相应数量的专用 包装容器:包括包装袋、利器盒和周转桶。
- (三)指定专人负责医疗废物交接工作,对移交的医疗废物 进行核实后填写《危险废物转移联单》(医疗废物专用)和《医 疗废物运送登记卡》。
- (四)指定专人按照约定的时间到甲方的医疗废物暂存仓库 接收医疗废物。
- (五)根据《医疗废物管理条例》和《医疗废物集中处置技 术规范》对接收的医疗废物进行无害化处置。

第七条 违约责任

- (一) 如甲方未按规范分类、收集、暂存医疗废物, 乙方有 权拒绝接收:造成医疗废物无法规范处置的事实,视同甲方违约, 一切责任由甲方承担。
- (二) 如乙方未按规范收运、处置甲方的医疗废物,造成二 次污染的事实,视同乙方违约,一切责任由乙方承担。

第八条 争议解决方式

本合同在履行中如发生争议,应由双方协商解决:如协商不 成,报请西安市医疗废物集中处置领导小组办公室进行调解;调 解不成, 可向西安市人民法院提起诉讼。

第九条 合同定义、变更和终止

- (一)本合同所涉术语均参照《医疗废物管理条例》、《医疗废物处置技术规范》的有关定义。
- (二)国家有关医疗废物的法律、法规、规范性文件若发生变更修订,甲、乙双方应根据变更后的内容对本合同进行修订。
- (三) 西安市医疗废物处置收费标准发生变更时,甲、乙双 方应执行新的物价收费标准。
- (四)双方协商一致,可对合同的部分或全部条款进行变更或终止。

第十条 本合同未尽事宜,可签订补充协议,补充协议与本 合同具有同等法律效力。

第十一条 本合同一式三份, 甲、乙双方各执一份, 报环保 局一份。

第十二条 合同有效期:由双方签字盖章后生效,有效期一 年。

· 第十三条 在合同有效期内,如陕西省物价行政主管部门调整医疗服务价格成本,甲、乙双方应重新签订《委托合同》,本合同自行终止。

备注:	依照本	合同第	五条第二	二款约定	, 甲;	方应补	缴	年
度医疗废物	力处置费	人民币	(大写:		万	_仟	佰	拾
元整,	小写:			元整)。				

乙方(盖章):

法人代表: 张颖旭

委托代理人(签字):

委托代理人(签字):2

签约日期:

签约日期:2020.7.16

开户行:

开户行:中国银行西安长安路支行

账 号:

账 号: 102407336786

合同有效期: 2024年 4 月13 日至 2021年 4 月15 日

	辖 区	9 9
甲	地 址	
方	电 话	
	联系人	
	电 话	收运电话: 029-86033616
乙方	电场	客服电话: 029-85572569
方	54 E1	公司: 由江新区翠华南路 500 号佳和中心 B 座 22 层 2205 室
	地 址	处置中心: 西安泾河工业区泾渭南路1号

(医疗废物专用)

医疗卫生机构名称:西主为语艺术范安克至

NO: 6114003

医疗废物处置单位:

时间: 年 月

16 16	感染性废		损伤性		医疗卫生	废物运送	
日期	体 积 (箱)	重量 (kg)	体 积 (盒)	重量 (kg)	机构交接 人员签名	人员签名	时间
2.1					委叔	到到	18:00
21	4 Fin 4.1						
1 9							
2/10							
E. A	100						
						100	
			-	-	-		
		1			The same		-
							-
-							
		-	-				
	1				783		-
	-				1		
			-				83
	1						
合计			70		十倍部门各-		

注: 1、一式三份, 医疗机构、处置单位、环保主管部门各一份。处置单位每月5日 送上月〈医疗废物处置月报表〉时间时送达环保主管部门。

2、本转移联单作为医疗机构,处置单位的交接凭据,双方签字确认生效。

(医疗废物专用)

医疗卫生机构名称: 两名 凯瑟 医羊花克克莱克 NO: 161

医疗废物处置单位:

	感染性废	物及其他	损伤性	E废物	医疗卫生机构交接	废物运送	交接时间
日期	体 积 (箱)	重量 (kg)	体 积 (盒)	重量 (kg)	人员签名	人员签名	
74	4板00				沙葱	2194	152
14	I IIII					-	
					1		1-
			1		4		
			1	-			
				-	-		
18							1
						1	
		-					
	No. of the last		1				
			1		-	100	
					The second		
_							
		-	-				
				100			
							900
		1					
						Contract of the Contract of th	

- 注: 1、一式三份, 医疗机构、处置单位、环保主管部门各一份。处置单位每月5日前报 送上月《医疗废物处置月报表》时间时送达环保主管部门。
 - 2、本转移联单作为医疗机构,处置单位的交接凭据,双方签字确认生效。

(医疗废物专用)

医疗卫生机构名称: 法人员以来 发的

医疗废物处置单位:

时间: 7 年 月

	感染性废		损伤性		医疗卫生	废物运送	交接
期	体 积 (箱)	重量 (kg)	体 积 (盒)	重量 (kg)	机构交接人员签名	人员签名	时间
					100	2152	14.1
3	411014	/			1		
-				No.			
100	-	-					
	Me.	-		-			
					-		
-							
				1			
						100	
		-					
-							
-							
-		1					
1				9			
_							
	-			-			
-							
合计	+	1	100		主管部门各一	10 65 图 66	位每月5日

注: 1、一式三份, 医疗机构、处置单位、环保主管部门各一

送上月〈医疗废物处置月报表〉时间时送达环保主管部门。 2、本转移联单作为医疗机构,处置单位的交接凭据,双方签字确认生效。

(医疗废物专用)

医疗卫生机构名称: 高

医疗废物处置单位:

年 时间:

医疗废	物处置单	位:一	Re		- 3t 77 th	1	交接	1
	感染性废	物及其他	损伤性	医物	医疗卫生 机构交接	废物运送 人员签名	Self-contract to	1
日期	体积	重量 (kg)	体 积 (盒)	重量 (kg)	人员签名	八贝亚丁	1	
1	(箱)	(Kg)	(fm. /		沙漠	411	145	
E	7 HA (04)			1	MA	1		
	THE V	19	1		1	AST B	1000	
		Y			1		100	W
70		-	-			38	1300	
		1			1911		300	
	Ten 3			1000	77		1	
- 19	WI TO	di						
11	-	1	100			1	1	1
	1		1000	1	1			1
1	1-30	No.	1 A				3	1
1	1939				-		10	1
1	1	3					1	1
197							1	
1	1906			1	100			
-		10	#			-		
1	-			1				7
10			1		10			
	90		10	1	1			
-			3				363	
1	6	-			A P			
		7		1		100	7 10 10	
1	14							4 47
台	计	1	1-11 0 m	W 10 TT 15	+ 游部门各	一份。处置单	位每月5日日	III III

注: 1、一式三份,医疗机构、处置单位、环保主管部门各一份。处置

送上月(医疗废物处置月报表)时间时送达环保主管部门。

2、本转移联单作为医疗机构,处置单位的交接凭据,双方签字确认生效。

(医疗废物专用)

医疗卫生机构名称: 而是凯克拉克沙

No. 6114095 45

医疗废物处置单位:

时间: 21年3月

to the	感染性废物	物及其他	损伤性	上废物	医疗卫生	废物运送	交接
日期	体 积 (箱)	重量 (kg)	体 积 (盒)	重量 (kg)	机构交接 人员签名	人员签名	
10	5桶(5件)				顺	2/1/2	147
					NA.	-	
3							
- 10				1/4			
- 100							
	The same	100					
	-						-
					100		
				1			
合计						→	

- 注: 1、一式三份, 医疗机构、处置单位、环保主管部门各一份。处置单位每月5日前报 送上月〈医疗废物处置月报表〉时间时送达环保主管部门。
 - 2、本转移联单作为医疗机构、处置单位的交接凭据、双方签字确认生效。

换两领兄坏保工程有限公司

危险废物委托回收

合

同

书

签约地点: 西安经济技术开发区泾渭新城泾高北路中段1号3栋202号

签订日期: 2020年12月

甲方: 西安凯普医学检验实验室有限公司

乙方: 陕西领凡环保工程有限公司

根据《中华人民共和国固体废物污染环境防治法》、《中华人民共和国民法典》的有关规定,甲乙双方本着"平等自愿、互惠互利"的原则,甲方就甲方产生的危险性废物委托乙方依 法依规处置,乙方持有中华人民共和国生态环境部门颁发的《危险废物经营许可证》,现经双 方友好协商,达成如下协议:

一、危险废物收集处置、贮存种类、费用标准:

序号	危废名称	危废编号	包含处置量	处置费用	超出部分	付费方
1	其他废物	HW49 (含子項)	40kg		6 元/kg	乙方
备注	2、以上费用 该价格包含3	_含_税,税率 变化后的税费;	池等其他费用: <u>6%</u> ,若合同期 法运输 2 次危险;]内税率变化,		

- 1、合同签订之日,乙方向甲方提供相关危险废物标识及危险废物相关技术服务,甲方 须在五个工作日内向乙方公司账户以现金或转账方式支付危险废物技术支持费<u>13000</u>元, (人民币大写: <u>壹万叁仟元整</u>)。甲方每迟延壹天须支付乙方 5%的违约金(按天累计), 甲方迟延 10 天,则甲方承担全部违约责任,乙方保留单方面解除本合同的权利。乙方须按时 收运并处置相关危险废物,乙方每迟延壹天须支付甲方 5%的违约金(按天累计),乙方迟延 10 天,则乙方承担全部违约责任,甲方保留单方面解除本合同的权利。
- 2、所转移的危险废物超出上表包含处置量时,超出部分甲方须按上表超出部分处置单 价在五个工作日内向乙方支付处置费用。
- 3、乙方每次收运甲方危险废物时,甲方应配合乙方根据双方核定的危险废物种类,重量据实填写危险废物转移联单。

二、甲乙双方的责任和义务

根据《中华人民共和国固体废物污染防治法》、《中华人民共和国危险废弃物管理办法》 以及《中华人民共和国危险废物转移联单管理办法》等相关法律法规的规定。甲方全权委托乙 方对甲方生产过程中产生的危险废物进行安全回收与处置,双方责任如下:

甲方责任和义务

- (一)、甲方须将本合同中所列出(900-041-49)危险废物连同包装物全部交予乙方回收, 如因甲方未交由乙方回收或甲方私自收集处置所导致的一切后果,由甲方承担全部法律责任。 合同期内不得自行处理或者交由第三方处理。
- (二)、甲方所产生的危险废物的包装、贮存及标识必须符合中华人民共和国及地方政府相关技术规范、规定的标准要求。
- (三)、甲方须将其待处理的危险废物集中统一摆放,并由甲方负责协助乙方装车,包含向乙方无偿提供叉车、卡板等相关运输器具(若有)。
 - (四)、甲方须保证提供给乙方的危险废物不出现下列异常情况:
 - 危险废物的类别未列入本合同(尤其不得含有易燃易爆物质、放射性物质、多氯 联苯等剧毒物质);
 - 2、危险废物标识不规范或者错误,包装破损或者密封不严;
 - 3、两类及以上危险废物混合装入同一容器内,或者将危险废物与非危险废物混装。
- (五)、甲方承担非因乙方原因导致的在其厂区内部收集、临时贮存过程中发生的环境污染等相关违法行为的相应责任,若因乙方原因导致前述相关违法行为的,由乙方承担相应责任。
- (六)、甲方须严格按照《中华人民共和国危险废物转移联单管理办法》的有关规定办理 危险废物的转移手续(包括但不限于当地环保部门要求办理的转移许可、备案等)。
 - (七)、甲方负责办理危险废物出甲方厂区的相关环保手续,并承担相关费用。

乙方责任和义务

- (一)、乙方必须保证所持有危险废物许可证、执照等相关证件合法有效。
- (二)、乙方安排专人负责危险废物的装卸,使用国家法规规定的专用车辆,按约定时间及时对移交的危险废物进行转移,并负责转运过程中的污染控制及人员的安全防护,承担危险废物交接后的责任。
- (三)、乙方严格按照《中华人民共和国危险废物转移联单管理办法》的有关规定完善危险废物的转移手续(包括但不限于到环保部门办理危险废物转移方案表等)。

海河 一

011

座机: 029-89076173

(四)、乙方应对甲方移交的危险废物类别、重量及包装情况进行检查核实,严格按照《中 华人民共和国危险废物转移联单管理办法》的有关规定签收《危险废物转移联单》。

三、违约责任

- (一)、若甲方未能正确履行第一款、第二款规定的相关责任与义务,乙方有权拒绝运输。 所造成的运输费用和人工费用等相关费用由甲方全部承担。
 - (二)、任何一方违反本合同的规定,均须承担违约责任。
- (三)、若甲方未及时履行本合同第一款第一条、第二条规定的付款条约,则视为甲方单方面违约,由甲方承担全部违约责任,且须向乙方违约金(按照本合同约定危险技术支持费5%/天乘以实际违约天数来结算给乙方)。
- (四)、本合同生效后,如任意一方违约,另一方为维护权益而追偿的一切费用包括但不 限于律师费、诉讼费、保全费、鉴定费、评估费、差旅费等。

四、安全条款:

- 1、乙方所派遣至甲方的相关工作人员必须是乙方的授权员工(持有乙方授权责任书加 盖单位公章),甲方须对此审核。
- 2、乙方工作人员作业过程中应严格按规定作业,甲方对乙方作业人员没有任何指示义务,且不存在任何法律上的义务。
- 3、乙方工作人员进场后,必须遵守甲方现场的各项规章制度,在装卸货过程中,如因 乙方原因造成甲方的财产或人员以及第三方的损失的由乙方负责赔偿;如因甲方原因造成的乙 方的财产或人员以及第三方的损失的由甲方负责赔偿。

五、通知条款

- 本协议项下的任何书面通知均应以书面形式送达至本合同载明的联系地址、联系人送达对方。
- 2、若一方联系地址、电话发生变更,应在三日内以书面形式通知对方,否则按本合同 载明地址发出通知后三个工作日后即视为已履行通知义务或已送达。
- 3、任何一方按照本协议收不裁明的联系地址、联系人向另一方寄送函件、文件的,函件、文件以快递方式寄送,自投递之日起第四日视为有效送达。

六、本合同未尽事宜,甲乙双方可协商后签订补充协议,作为补充条款,补充协议一经签署生效即构成本合同的一部分,与本协议均具备同等法律效力。若有冲突之处,以最新的补充协议为准。

七、争议解决方式

因履行本合同过程中发生的任何纠纷, 甲乙双方应先友好协商解决, 协商不成的, 可向原告所在地人民法院提起诉讼。

八、本合同在甲乙双方签字加盖合同专用章后即时生效。

本合同有效期 2021 年 1 月 1 日至 2021 年 12 月 31 日。

九、本合同一式贰份,甲方壹份,乙方壹份,合同均具有同等法律效力。

甲 方(盖章): 西安洲西安龙岭实验室有限公司

单位代表(签章):

联系电话: 1839265641

地 址:西安经济技术开发区经清新规径高北路中段1号3栋202号

乙 方(盖章): 陕西领见财保工程有限公司

单位代表(签章):

联系电话: 029-89076173

地 址: 陝西省武龙市尚良甚毫行道(火车站道北留守处西侧)

乙方单位名称: 陕西领凡环保工程有限公司

纳税人识别号: 91610114MA6W37Y25L

地 址:西安市阎良区

开 户 行:中国建设银行股份有限公司西安阎良区支行

账 号: 61050170510300000656

签约时间: 2020年12月31日

环(监) 2021-0403号

项目名称: 西安凯普医学检验所建设项目验收监测

委托单位: 西安凯普医学检验所有限公司

陝西昌泽环保科技有限公司 2021年4月14日

检验检测机构 资质认定证书

证书编号: 162721340436

名称: 陕西昌泽环保科技有限公司

再复印无效

地址:陕西省西安市经济技术开发区草滩九路360号西安人工智能与机器人产业园5号楼4-5层

经审查, 你机构已具备国家有关法律、行政法规规定的基 本条件和能力, 现予批准, 可以向社会出具具有证明作用的数 据和结果、特发此证。资质认定包括检验检测机构计量认证。

检验检测能力及授权签字人见证书附表。

你机构对外出具检验检测报告或证书的法律责任由陕西昌泽环 保科技有限公司承担。

许可使用标志

发证日期: 2021年01月19日

有效期至: 2022年17月10日

发证机关:陕西省市场监督管理局(代章)

162721340436

本证书由国家认证认可监督管理委员会监制,在中华人民共和国境内有效。

声明

- 1、报告封面及签发人处无本公司检验检测专用章无效,报告无骑缝章无效,报告无 **፻○** 标识无效。
 - 2、报告内容需齐全、清楚,涂改无效;报告无相关责任人签字无效。
- 3、未经本公司书面批准,不得部分复制本报告;复制报告后未重新加盖"陕西昌泽环保科技有限公司检验检测专用章"无效。
 - 4、报告中无检验检测机构资质认定证书无效。
- 5、由委托方自行采集的样品,仅对送检样品的测试数据负责,不对 样品来源负责,委托方对所提供的样品及其相关信息的真实性负责,对 检测结果可不作评价。
- 6、本报告仅提供给委托方,本公司不承担其他方应用本报告所产生的责任。
- 7、对本报告检测数据有异议,应于收到报告之日起十日内(若邮寄可依邮戳为准),向本公司提出书面申诉,逾期则视为认可检测结果。
- 8、本报告及数据不得用于产品标签、包装、广告等宣传活动,违者必究。

地址: 陕西省西安市经济技术开发区草滩九路 360 号西安人工智能与 机器人产业园 5 号楼 4~5 楼

电话: 029-86557929

传真: 029-86557929

邮箱: sxczhbkj@163.com

邮编: 710018

环(监)2021-0403号

第1页共11页

项目名称	西安凯普医生	学检验所建设	项目验收监:	则
委托单位	西安凯	普医学检验所	有限公司	
受测单位 地址	西安市经济开发区径沿	胃新城泾高北	路中段1号	3 栋 202 号
监测类别		验收监测		
监测日期	2021年4月7日~8日	监测人员	THE PERSON NAMED OF THE PARTY O	午坤、王浩祥、 盾腾、净凯博、 杨蕊
分析日期	2021年4月7日~13日	分析人员	THE R. P. LEWIS CO., LANSING, MICH. 49, 610	可志玲、刘思怡 『亚娟、郑 琛
采样方法	有组织废气:《固定源废气 无组织排放:《大气污染物无 污水:《污水监测技术规范 厂界噪声:《工业企业厂界	E组织排放监	则技术导则》 2019)	(HJ/T 55-2000)
监测类别	监测点位	监测项目		监测频次
	实验室东侧处理设施进、出口			
THE ALL ALL THE ALL	24, 111	Arr 11- Air -11	ZI 24 25 CD -	监测2天,
有组织废气	实验室西侧处理设施进、出口	氯化氢、非	甲烷总烃	监测2天,每天3次。
有组织废气	实验室西侧处理设施	類化氢、非pH 值、悬浮化学需氧量 需氧量、/ 类大版	物、氨氮、、五日生化总余氯、	The state of the s
	实验室西侧处理设施 进、出口	pH 值、悬浮 化学需氧量 需氧量、	物、氨氮、 、五日生化 总余氯、 ,菌群	每天3次。 监测2天,
污水	实验室西侧处理设施 进、出口 医疗废水处理站出口 厂界上风向1个监控点,下	pH 值、悬浮 化学需氧量 需氧量、/ 粪大服	物、氨氮、 、五日生化 总余氯、 ·菌群 :甲烷总烃	每天3次。 监测2天, 每天4次。 监测2天,

环(监) 2021-0403号

第2页共11页

		监测分析方法和监	[測仪器	30	
类别	项目	监测方法及依据	监测仪器	检出限	
	非甲烷总	《固定污染源废气 总 烃、甲烷和非甲烷总烃的 测定 气相色谱法》 HJ 38-2017	YQ3000-D 型大流量 烟尘(气)测试仪 (CZHB145) (CZHB190) G5 型气相色谱仪	0.07 mg/m ³	
有组织废气			(CZHB007) YQ3000-D 型大流量 烟尘(气)测试仪 (CZHB145) (CZHB190)		
	氯化氢	《固定污染源排气中氯 化氢的测定 硫氰酸汞分 光光度法》HJ/T 27-1999	MH1200 型全自动大 气/颗粒物采样器 (CZHB177)	0.9mg/m ³	
		Julyana wasan an 1999	ZR-3710 双路烟气采 样器(CZHB127)	4 1	
			722S 型分光光度计 (CZHB004)		
无组	非甲烷总烃	《环境空气 总烃、甲烷 和非甲烷总烃的测定 直接进样-气相色谱法》 HJ 604-2017	G5 型气相色谱仪 (CZHB007)	0.07mg/m ³	
织排 放		《固定污染源排气中氯	722S 型分光光度计 (CZHB004)	0.05	
	氯化氢	化氢的测定 硫氰酸汞分 光光度法 》HJ/T 27-1999	MH1205 型恒温恒流 大气/颗粒物采样器	mg/m ³	
	pH值	《水质 pH 值的测定 玻璃电极法》 GB/T 6920-1986	DZB-718L 便携式多 参数分析仪 (CZHB219)	1	
污水	悬浮物	《水质 悬浮物的测定 重量法》	GZX-9240MBE 型电 热鼓风干燥箱 (CZHB027)	4mg/L	
	25x12 (20	GB/T 11901-1989	FA1004 电子天平 (CZHB046)		
各注		1			

环(监)2021-0403号

第 3 页 共 11 页

类别	项目	监测方法及依据	监测仪器	检出限		
	五日生化需氧量	《水质 五日生化需氧量(BODs)的測定 稀释	QDSH-80 型智能生 化培养箱 (CZHB034)	0.5mg/L		
	而判里	与接种法》HJ 505-2009	JPSJ-605F 型溶解氧 仪(CZHB044)	2000		
	化学需 氧量	《水质 化学需氧量的测 定 重铬酸盐法》 HJ 828-2017	酸式滴定管 (CZHB-QT-080)	4mg/L		
污水	氨氮	《水质 氨氮的测定 纳 氏试剂分光光度法》 HJ 535-2009	722S 型分光光度计 (CZHB003)	0.025mg/L		
	粪大肠菌	《水质 粪大肠菌群的	QDSH-80 智能生化 培养箱(CZHB033)			
	群	測定 多管发酵法》 HJ/T 347.2-2018	YXQ-LS-18S I 手提 式压力蒸汽灭菌器 (CZHB099)	20MPN/L		
	总余氯	《水质 游离氯和总氯的 测定 N,N-二乙基-1.4- 苯二胺分光光度法》 HJ 586-2010 附录 A	DGB-403F 便携式余 氯/总氯/二氧化氯测定 仪(CZHB211)	0.04mg/L		
厂界	等效连续	《工业企业厂界环境噪 声排放标准》	HS6020A 型声级校准 器 (CZHB130)			
噪声	A 声级	GB12348-2008	HS6020 型声级校准器 (CZHB131)	,		

环(监)2021-0403号

				有	有组织废气监测结果	(结果					
第1次 第3次 第1次 第2次 第3次 第1次 第2次 第3次 第2次 第3次 第1次 第2次 第3次 第1次 第2次 第3次 第1次 第2次 第3次 第2次 第3次 第2次 第2次 第2次 第2次 第2次 第2次 第2次 第2次 第2次 第2	细	测点位	实验室身	云侧处理设施过		П	100	D=0.30			1
第1次 第2次 第3次 第1次 第2次 第3次 第3次 第1次 第2次 第3次 第1次 第2次 第3次 第1次 第2次 第3次 第1次 第2次 第3次 第2次 第3次 第2次 第3次 第2次 第3次 第2次 第3次 第2次 第2次 第2次 第2次 第2次 第2次 第2次 第2次 第2次 第2	外	理设施		活性炭吸附		出口监测断日	面尺寸(皿)	D=0.30	持气简高度		15
第1次 第2次 第3次 第1次 第2次 第3次 第3次 第 1.4	组	測时间	20	321年4月7日	ш		4月8			樊奘	中
1.4 1.5 1.3 1.4 1.3	超	泡頻次	第1次	第2次	第3次			第3次	最大值	過煙	米が
20 19 19 18 20 20 6.0 6.0 6.0 6.1 6.0 6.1 6.0 6.1 6.0 6.1 6.0 6.1 6.0 6.1 6.0 6.1 6.0 6.1 6.0 6.1 6.0 6.1 6.0 6.1 6.0 6.1 6.0 6.1 6.0 6.1 6.0 6.1 6.0 6.1 6.0 6.1 6.0 6.1 8.2 8 8 8.2 8 8 8 8.2 8 8.2 8 8 8 9 9.9 9.9 9.9 9.9 9 9 9.9 9 </td <td></td> <td>今湖屋 (%)</td> <td>1.4</td> <td>1.5</td> <td>1.3</td> <td>1.4</td> <td>13</td> <td>1.3</td> <td>,</td> <td>1</td> <td>-</td>		今湖屋 (%)	1.4	1.5	1.3	1.4	13	1.3	,	1	-
6.0 6.0 6.0 6.1 6.0 6.1 6.2 6.2 2.4.2	批	作組度 (C)	20	19	19	18	20	20	1	1	1
m³) 6.8 8.4 7.6 6.6 7.3 8.2 8 9.23×10³ 1.14×10² 1.03×10² 9.12×10³ 9.90×10³ 1.13 1.14 m³) 22.2 23.5 21.8 23.7 22.6 24.2 2 m³) 22.2 23.5 21.8 23.7 22.6 24.2 2 m³) 22.2 23.5 1.2 1.2 1.13 1.13 1.13 1.2 1.2 1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.46 6.5 6.4 6.5 6.4 6.5 6.4 6.5 6.4 6.5 6.4 6.5 6.4 6.5 3.6 1.46 1.468 1.48 1.48 1.48 1.44 1.468		流速 (m/s)	0.9	0.9	6.0	6.1	0'9	6.1	1	1	1
m³) 6.8 8.4 7.6 6.6 7.3 8.2 8 m³) 6.8 8.4 7.6 6.6 7.3 8.2 8 m³) 22.2 23.5 1.03×10² 9.12×10³ 9.90×10³ 1.13 1.13 1.13 1.13 1.13 1.13 0.034 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 <	标	干流量 (m³/h)	1357	1358	1361	1382	1356	1378	,	1	,
m³) 9.23×10³ 1.14×10² 1.03×10³ 9.12×10³ 1.13×10³ 1.14 m³) 22.2 23.5 21.8 23.7 22.6 24.2 2 n³) 0.030 0.032 0.030 0.033 0.031 0.033 0.033 0 1.2 1.2 1.2 1.3 1.3 1.3 0 0 1.2 1.2 1.2 1.3 1.3 1.3 0	個小腿	实测浓度(mg/m³)	8.9	8.4	7.6	9.9	7.3	8.2	8.4	1	_
m³) 22.2 23.5 21.8 23.7 22.6 24.2 2 1.2 0.030 0.032 0.033 0.031 0.033 0.034	And Called	速率(kg/h)	9.23×10 ⁻³	1.14×10 ⁻²	1.03×10-2	9.12×10 ⁻³	9.90×10 ⁻³	1.13×10-2	1.14×10-2	1	-
	#田华	实测浓度(mg/m³)	22.2	23.5	21.8	23.7	22.6	24.2	24.2	1	,
1.2 1.2 1.3 1.4 1.	免疫	速率(kg/h)	0.030	0.032	0.030	0.033	0.031	0.033	0.033	1	-
m3 18 18 19 19 18 18 18 19 18 6.5 6.2 6.4 6.5 6.5 6.2 6.4 6.5 3.6 3.3 3.2 3.6 3.5 3.6 3.3 3.6 3.3 3.6 3.3 3.2 3.6 3.2 3.6 3.2 3.6 3.2 3.6 3.2 3.2 3.6 3.2 3.6 3.2 3.6 3.2 3.6 3.2 3.6 3.2 3.6 3.2 3.6 3.2 3.6 3.2 3.6 3.2 3.6 3.2 3.6 3.2 3.6 3.2 3.6 3.2 3.6 3.2 3.6 3.2 3.6 3.2 3		含還量 (%)	1.2	1.2	1.2	1.3	1.3	1.3	1	1	,
6.3 6.4 6.5 6.2 6.4 6.5 1430 1451 1403 1445 1468 m³) 3.5 2.7 2.1 3.3 2.5 3.6 h³) 5.01×10³ 3.92×10³ 3.09×10³ 4.63×10³ 5.28×10³ 5.28 5) 45.8 65.7 70.1 49.2 63.5 53.2 m³) 7.20 6.24 5.81 6.11 6.34 7.01 7.01 (b) 0.010 0.009 0.009 0.009 0.009 0.010	#5	特代温度(TC)	18	18	18	19	19	18	1	1	,
1430 1451 1403 1445 1468 1468 1450 1451 14013 1445 1468 1468 1451 1403 1445 1468 1468 1452 1458 1458 145.8		流速 (m/s)	6.3	6.4	6.5	6.2	6.4	6.5	1	,	,
m³) 3.5 2.7 2.1 3.3 2.5 3.6 3.6 fh) 5.01×10³ 3.92×10³ 3.09×10³ 4.63×10³ 5.28×10³ 5.28 f) 45.8 65.7 70.1 49.2 63.5 53.2 m³) 7.20 6.24 5.81 6.11 6.34 7.01 7.01 m³) 65.8 70.0 0.009 0.009 0.009 0.010	神	干流量 (m³/h)	1430	1451	1471	1403	1445	1468	1	,	
(h) 5.01×10 ⁻³ 3.92×10 ⁻³ 3.09×10 ⁻³ 4.63×10 ⁻³ 3.61×10 ⁻³ 5.28×10 ⁻³		排放浓度(mg/m³)	3.5	2.7	2.1	3.3	2.5	3.6	3.6	100	达标
(a) 45.8 65.7 70.1 49.2 63.5 53.2 (b) 7.0	氧化氮	排放速率(kg/h)	5.01×10-3	3.92×10 ⁻³	3.09×10 ⁻³	4.63×10 ⁻³	3.61×10 ⁻³	5.28×10-3	5.28×10 ⁻³	0.26	达标
 □3		去除效率(%)	45.8	65.7	70.1	49.2	63.5	53.2	/	1	,
(b) 0.010 0.009 0.009 0.009 0.009 0.000 0.010	中田	排放浓度(mg/m³)	7.20	6.24	5.81	6.11	6.34	7.01	7.20	120	达标
65.8 71.6 71.2 73.8 70.1 69.1 前期间,实验室东侧处理设施出口中氯化氮最大排放浓度 3.6mg/m³, 排放速率为 5.28×10 ⁻³ kg/h, 为 1.03×10 ⁻³ kg/h, 均符合《大气污染物综合排放标准》(GB 16297-1996)表 2 中标准限值, 氧化氢去归 8%~73.8%。		排放速率(kg/h)	0.010	600.0	600.0	600.0	600.0	0.010	0.010	10	达标
別期间,实验室亦倒处理设施出口中氯化氮最大排放浓度 3.6mg/m³,排放速率为 5.28×10³kg/h,为 1.03×10²kg/h,均符合《大气污染物综合排放标准》(GB16297-1996)表 2 中标准限值,氦化氢去序.8%~73.8%。	3	去除效率(%)	65.8	71.6	71.2	73.8	70.1	69.1	1	1	,
	由表度为7.20 非甲烷总	中数据可知:监测期间 Jmg/m³, 排放速率为1.03 烃去除效率为65.8%~~	,实验室东侧 3×10-3kg/h, 均? 73.8%。	处理设施出口 符合(大气污染	中氯化氮最大物緣大物	排放浓度 3.6n 标准》(GB16297	ng/m³, 排放達 7-1996)表 2 中	率为5.28×10标准限值,氧化	Ag/h, 非甲烷 2氢去除效率为	总烃最大 3 45.8%~	排放浓 70.1%,
THE TAX AND ADDRESS OF THE PARTY OF THE PART				40	辦结果仅对本	外所來群品布	张				

田田田

世世

紀公 备注

# 25 (1975)	(201 年 4 月 7 日 注口監測断而尺寸(m) D=0.30 活性接受的 注口監測断而尺寸(m) D=0.30 活性接受的 注口監測断而尺寸(m) D=0.30 注目投施 第1次 第2次 第1次 第2次 第3次 章2	海信位 実验室面優处理设施进、出口 进口监测断面尺寸(m) D=0.30 排气簡高度 指投施 (m) 日本 (m) (m) 日本 (m) (m) 日本 (m)	(m) D=0.30 (m) D=0.30 4 月 8 日 2 次 第 3 次 3 1.4 1.4 1 20 2 5.4 67 1218 67 1218 67 1218 67 1218 6.6 8.04×10 ³ 8.04×10 ³ 1.3 9 18 9 18 45 1468 6.5 1.3 9 18 7.11 009 0.010		組	处	III	4 1	H		TO.		地口井	調ク側	The same of the sa	非甲烷	の数	8/	144		海	# D#	無名國		华田华	· · · · · · · · · · · · · · · · · · ·		由表 结论 度为8.4. 非甲烷烷
	有組象後气臨測結果 法院を同様を開発を開発を開発を開発を開発を開発を開発を開発を開発を開発を開発を開発を開発を	有線免疫气盛測结果 実验室面優处建设施进、出口 出口監測断面尺寸 (m) D-030 排气筒高度 第1次 第1次 第2次 第1分 13 113 114 ///////////////////////////////////	本総章 西側位理设施士、出口 独口監測断面尺寸(m) D=0.30 排气筒高度(m) 石柱炭吸附 出口監測断面尺寸(m) D=0.30 排气筒高度(m) 五0.21年4月7日 20.21年4月8日 20.21年4月7日 20.21年4月8日 20.21年4月7日 20.21年4月8日 20.21年4月7日 20.21年4月8日 20.21年4月7日 20.21年4月8日 20.21年4月7日 20.21年4月8日 20.21年4月7日 20.21年4月8日 20.21年4月8日 20.21年4月7日 20.21年4月8日 20.		监测点位	处理设施	2. 2010年(四)	E CALL I I I I I	宣測規次	含凝量 (%)	排气温度(で)	斯斯 (m/s)	标干流量 (m³/h)	实测浓度(mg/m³)	+		速率(kg/h)	含湿量(%)	排气温度('C)	流速 (m/s)	标干流量 (m³/h)	排放浓度(mg/m³)	排放速率(kg/h)	去除效率(%)	排放浓度(mg/m³)	排放速率(kg/h)	去除效率(%)	英中数据可知: 监测期间 2mg/m³, 排放速率为 0.0 3烃去除效率为 63 4%~~
有組象機气脂調結果 14 14 14 14 14 14 14 1	有無条	有組象 有組象 有組象 有組象 有組象 有組象 有組象 日本 120 14 14 15 15 15 15 15 15	有組象接气監測结果		实验室				第1次	1.4	19	5.4	1221	6.9	8.42×10 ⁻³	26.4	0.032	1.4	19	5.9	1315	3.3	4.34×10 ⁻³	48.5	7.64	0.010	68.8	· 实验室西侧 11kg/h, 均符4 73.9%.
# 出口	# 出口	# 出口	# (有	西側处理设施过	北本市馬思	THILDWAY HI	2021年4月7	第2次	1.3	19	5.4	1222	7.3	8.92×10 ⁻³	24.7	0.030	1.4	20	5.9	1312	2.5	3.28×10 ⁻³	63.2	8.42	0.011	63.4	处理设施出口 5(大气污染板
#日 (中)	14年 独口監測断面尺寸 (m) D=0.30 出口監測断面尺寸 (m) D=0.30 2021年4月8日 322 第3次 1.3 1.4 1.9 21 20 5.3 5.2 5.4 1197 1167 1218 8.0 7.2 6.6 9.58×10 ⁻³ 8.40×10 ⁻³ 8.04×10 ⁻³ 23.7 24.8 25.1 0.028 0.029 0.031 1.3 1.3 1.3 1.9 19 18 6.2 6.4 6.5 1403 1445 1468 3.6 2.6 3.2 2.05×10 ⁻³ 3.76×10 ⁻³ 41.6 6.54 6.28 7.11 0.009 0.0010 6.7.7 68.6 65.9 3.1	14年 2021年4月8 1-6-30 排气筒高度 14 1-6-30 排气筒高度 13 1.4 1-6-30 14 1-6-30 14 1-6-30 14 1-6-30 14 1-6-30 1	#年 接口 上子 上子	组织废气监测	133			П	第3次	1.3	20	5.3	1195	7.0	8,37×10 ⁻³	25.2	0.030	1.4	20	6.0	1335	3.4	4.54×10 ⁻³	45.7	5.88	0.008	73.9	中氯化氢最大
面尺寸(m) 面尺寸(m) 2021年4月8 第2次 113 21 5.2 1167 7.2 8.40×10³ 24.8 0.029 1.3 1.3 1.3 1.445 6.4 1445 5.3 6.4 1445 6.4 1445 6.4 1445 6.4 1445 6.4 1445 6.2 6.2 8.0009 6.28 0.009 6.38 0.009	面尺寸(m) D=0.30 面尺寸(m) D=0.30 2021年4月8日 第2次 第3次 1.3 1.4 21 20 5.2 5.4 1167 1218 7.2 6.6 8.40×10³ 8.04×10³ 24.8 25.1 0.029 0.031 1.3 1.3 19 18 6.4 6.5 1445 4.70×10³ 55.3 41.6 6.28 7.11 0.009 0.010 6.86 659 1.376×10³ 1.468 2.6 3.2 3.76×10³ 5.3 4.70×10³ 6.4 6.5 1445 1468 2.6 3.2 3.76×10³ 6.4 6.5 19 18 6.4 6.5 19 18 6.4 6.5 19 18 6.4 6.5 19 18 6.4 6.5 19 18 6.5 6.5 10 0.031 10 0.031 11 0.031 11 0.009 11 0.009 11 0.010 12 0.010 13 0.010 14 0.010 15 0.010 16 0.010 17 0.009 18 0.010 18	面尺寸(m) D=0.30 排气筒高度 面尺寸(m) D=0.30 排气筒高度 第2次 第3次 無大値 1.3 1.4 / 21 20 / 5.2 5.4 / 1167 1218 / 1167 1218 / 1.2 5.4 / 1167 1218 / 24.8 25.1 26.4 0.029 0.031 0.032 1.3 1.3 / 1.4 6.5 / 1.4 6.5 / 1.4 6.5 / 2.6 3.2 3.6 3.76×10³ 4.70×10³ 5.05×10³ 5.5.3 41.6 / 6.28 7.11 8.42 0.009 0.010 0.011 6.8 6 65.9 / 1.6 6.8 / 1.6 6.5 / 2.6 3.2 3.6 3.76×10³ 4.70×10³ 5.05×10³ 5.5.3 41.6 / 6.2 6.5 / 1.4 6.5 / 2.6 3.2 3.6 3.76×10³ 4.70×10³ 5.05×10³ 6.28 7.11 8.42 0.009 0.010 0.011 6.8 6 65.9 / 1.9 6.8 65.9 / 1.9 6.8 65.9 / 1.0 0.009 0.010 0.011	面尺寸(m) D=0.30 排气筒高度(m) m D=0.30 排气筒高度(m) 21 22 3.4 / / / / / / / / / / / / / / / / / / /	11结果	井口路道所	は別様が口で	日工開記部	64	第1次	1.3	19	5.3	1197	8.0	9.58×10-3	23.7	0.028	1.3	19	6.2	1403	3.6	5.05×10 ⁻³	47.3	6.54	0.009	67.7	:排放浓度 3.61 生》(GB16297.
	D=0.30 D=0.30 B=3.次 1.4 20 5.4 1.218 6.6 8.04×10³ 25.1 0.031 1.3 1.8 6.5 14.6 7.11 0.010 65.9 470×10³ 41.6 7.11 0.010	D=0.30 排气筒高度 月=0.30 排气筒高度 1.4 / 1.4 / 20 / 5.4 / 1218 / 6.6 8.0 8.04×10³ 9.58×10³ 25.1 26.4 0.031 0.032 1.3 / 6.5 / 1468 / 6.5 / 4.70×10³ 5.05×10³ 4.70×10³ 5.05×10³ 65.9 / 7.11 8.42 0.010 0.011 65.9 / 7.11 8.42 0.010 0.011 65.9 / 7.11 8.42 0.010 0.011 65.9 / 7.11 8.42 0.010 0.011 65.9 / 7.11 8.42 0.010 0.011 65.9 / 7 1.46 7 1.46 7 1.46 8.42 1.46 9.58 1.58 8.42 1.60 8.42 1.60 8.42	D=0.30 排气筒高度 (m) D=0.30 排气筒高度 (m) 1.4 / / 20 / / 5.4 / / 1.18 / / 6.6 8.0 / 8.04×10³ 9.58×10³ / 25.1 26.4 / 25.1 26.4 / 1.3 / / 6.5 / / 1.3 / / 6.5 / / 1.3 / / 6.5 / / 1.3 / / 6.5 / / 1.3 / / 6.5 / / 1.3 / / 6.5 / / 1.3 / / 4.70×10³ 5.05×10³ 0.26 4.70×10³ 5.05×10³ 0.26 4.70×10³ 6.3 / 7 / / 7 / / 8.42 120 0.010 0.011 10 65.9 / / 7 / / 8.		而尺寸 (m)	(一) 十四月	(m)	00	第2次	13	21	5.2	1167	7.2	8.40×10 ⁻³	24.8	0.029	1.3	19	6.4	1445	2.6	3.76×10 ⁻³	55.3	6.28	60000	9.89	mg/m³, 排放速-1996)表2中:

116-200 Jr De	监测时间	氯化	七氢	监测时间	非甲烷总烃
监测点位	温测时间	测定值	平均值	mrsel to led	非甲烷學院
	9:00~10:00	0.08		9:00	0.97
oulle lets de	11:00~12:00	0.08	0.07	11:00	1.04
0#监控点	14:00~15:00	0.06	0.07	14:00	1.07
	17:00~18:00	0.07		17:00	1.02
	9:00~10:00	0.06		9:03	1.38
a wille debr de	11:00~12:00	0.07	0.00	11:03	1.40
1#监控点	14:00~15:00	0.11	0.08	14:04	1.46
	17:00~18:00	0.07		17:03	1.22
	9:00~10:00	0.09		9:05	1.31
a utilization de	11:00~12:00	0.10	0.00	11:08	1.15
2#监控点	14:00~15:00	0.08	0.09	14:07	1.32
	17:00~18:00	0.09		17:08	1.43
	9:00~10:00	0.08		9:13	1.27
a utile tee Je	11:00~12:00	0.11	0.10	11:12	1.22
3#监控点	14:00~15:00	0.10	0.10	14:13	1.37
	17:00~18:00	0.09		17:13	1.44
最	大值	1	0.10	1	1.46
标》	能限值	1	0.20	1	4.0
结论	由以上监测数据 大值为 1.46mg/m 符合《大气污染	3, 氯化氢的	监控点平均浓	皮度最大值为0	.11mg/m³, 均
备注		监测结果仅为	付本次所采料	品负责。	16

いるまとり

环(监)2021-0403号

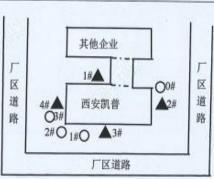
第7页共11页

项目、时	益測点位 间	0#监控点	1#监控点	2#监控点	3#监控点
	9:00	18.3	18.2	18.2	18.2
气温	11:00	20.6	20.6	20.5	20.4
(%)	14:00	25.5	25.4	25.5	25.6
	17:00	22.4	22.4	22.4	22.3
	9:00	97.9	97.9	97.9	97.9
气压	11:00	97.7	97.7	97.7	97.7
(kPa)	14:00	97.5	97.5	97.5	97.5
	17:00	97.6	97.6	97.6	97.6
	9:00	1.7	1.6	1.6	1.7
风速	11:00	1.9	1.9	1.8	1.8
(m/s)	14:00	2.1	2.0	1.9	1.8
	17:00	2.0	1.9	1.8	2.0
	9:00	60	60	60	60
风向	11:00	60	60	60	60
(°)	14:00	60	60	60	60
	17:00	60	60	60	60
坐林	ī.	E109°0'48.08" N34°31'3.91"	E109°0′45.92" N34°31′3.64"	E109°0'45.99" N34°31'3.18"	E109°0'46.71" N34°31'2.97"

环(监)2021-0403号

第 8 页 共 11 页

nte Stat. In 12.	the state of the	氯化	七氢	184-384 m.k.6=1	-H- mr Lev M Av
监测点位	监测时间	测定值	平均值	监测时间	非甲烷总烃
	9:00~10:00	0.09		9:00	1.02
0#监控点	11:00~12:00	0.08	0.08	11:00	0.93
0#超行法	14:00~15:00	0.07	0.08	14:00	1.01
	17:00~18:00	0.08		17:00	0.89
	9:00~10:00	0.09		9:04	1.18
a mille tale de	11:00~12:00	0.10	0.10	11:04	1.25
1#监控点	14:00~15:00	0.11	0.10	14:05	1.33
	17:00~18:00	0.08		17:04	1.27
	9:00~10:00	0.10		9:09	1.35
a usile dels de	11:00~12:00	0.09	0.10	11:10	1.20
2#监控点	14:00~15:00	0.11	0.10	14:10	1.43
	17:00~18:00	0.09		17:09	1.32
	9:00~10:00	0.08		9:16	1.37
a udle ble b	11:00~12:00	0.10	0.00	11:17	1.18
3#监控点	14:00~15:00	0.08	0.09	14:15	1.35
	17:00~18:00	0.10		17:16	1.48
卓	大值	1	0.10	1	1.48
标	性限值	1	0.20	1	4.0
结论	由以上监测数据可 大值为 1.48mg/m 符合《大气污染物	3, 氯化氢的监	控点平均浓度	度最大值为 0.	10mg/m³, 均
备注		监测结果仅对	本次所采样	品负责。	9


环(监)2021-0403号

第 9 页 共 11 页

		监测期间气	象参数(2021年	4月8日)	
项目、同	监测点位 时间	0#监控点	1#监控点	2#监控点	3#监控点
	9:00	17.8	17.7	17.7	17.7
气温	11:30	21.3	21.4	21.4	21.4
(°C)	14:00	24.6	24.5	24.5	24.5
	16:50	23.2	23.2	23.3	23.1
R	9:00	97.9	97.9	97.9	97.9
气压	11:30	97.7	97.9	97.7	97.7
(kPa)	14:00	97.6	97.7	97.6	97.6
	16:50	97.6	97.6	97.6	97.6
	9:00	1.9	1.9	2.0	1.9
风速	11:30	2.3	2.4	2.3	2.4
(m/s)	14:00	2.4	2.4	2.4	2.3
	16:50	2.2	2.1	2.1	2.1
	9:00	60	60	60	60
风向	11:30	60	60	60	60
(°)	14:00	60	60	60	60
	16:50	60	60	60	60
坐:	标	E109°0'48.08" N34°31'3.91"	E109°0'45,92" N34°31'3.64"	E109°0'45.99" N34°31'3.18"	E109°0'46.71' N34°31'2.97"
备注			1		

10-301 189	Ille Shinst Par		医疗废办	医疗废水站出口监测结果	海	单位: mg	单位: mg/L (除 pH 值、	粪大肠菌群)
H OS I SA	m. 699 P.3 [19]	pH值	悬浮物	氮氮	化学需氣量	五日生化需氣氣	業大肠菌群 (MPN/L)	总余额
	9:17	7.93	4	3.087	104	22.4	1.7×10²	0.88
4 H 7 H	11:13	8.04	4	2.993	93	21.9	2.0×10²	0.93
	14:13	8.14	7	3.034	113	22.1	2.4×10²	0.77
	16:25	8.56	5	2.964	108	21.8	2.1×10²	0.63
B	日均值	7.93~8.56	5	3.020	104	22.0	1	0.80
	9:35	8.54	5	2.922	124	23.4	2.7×10²	0.93
4 H 8 H	11:55	8.49	9	2.916	115	23.3	2.5×10²	1.05
	14:37	8.64	5	2.993	109	22.5	2.1×10²	0.74
	17:46	8.71	7	2.940	132	21.9	2.0×10²	0.59
Ш	日均值	8.49~8.71	9	2.954	120	22.8	/	0.83
排定	排放标准	6-9	09	1	250	100	5000	,
207	结论	由表中数据得出: 检测结果均符合(2000	本次所采样品中, pH 值、氨含《医疗机构水污染物排放标准》	105	(量、五日生化) 2005) 中歩った	、化学需氧量、五日生化需氧量、悬浮物、; (GB18466-2005)中表2的溶外曲排的标准	7、粪大肠菌群
44	おや				10	1 1 22 - 1 1 1 1 1	アンドー・エー・アント・	e H

		噪声监测统	结果	
监测日期	2021年	4月7日~8日	监测人员	王浩祥、王雪健
监测仪器	8名称、型号	HS6020A	型声级校准器(CZHB130)
校准仪器	8名称、型号	HS6020	型声级校准器(C	CZHB131)
点位编号	监测点位	经纬度	昼间 监测	结果 dB(A)
24.177.00	1000 1200 1200 1200 1200 1200 1200 1200	红卵皮	4月7日	4月8日
1#	厂界北侧	E109°0'46.85" N34°31'3.96"	49	50
2#	厂界东侧	E109°0'48.24" N34°31'3.64"	50	51
3#	厂界南侧	E109°0'47.11" N34°31'2.93"	55	55
4#	厂界西侧	E109°0'45.80" N34°31'3.39"	51	51
标准	主限值	1	65	65
结论	监测期间, 业厂界环境吗	厂界环境噪声昼间 读声排放标准》(GB	监测结果 49~55dE 12348-2008) 中 3	3(A),符合《工业企 类标准限值要求。
(象条件	4月7日: 昼	间: 晴 风速 1.1m/s	: 4月8日: 昼间	: 晴 风速 1.7m/s。

〇:代表无组织排放检测点。

▲:代表噪声检测点

编制:冯华南

审核: 沿地上

2021年4月/6日

附件:

		监测人员	
姓名	王雪健	李红亮	许坤
上岗证号	SXQCA-H17327	SXQCA-H19286	SXQCA-H17231
姓名	王浩祥	净凯博	雷腾
上岗证号	CZHB-1130	SXQCA-H19279	CZHB-1129
姓名	惠阳博	杨蕊	张雪莉
上岗证号	CZHB-1319	SXQCA-H19280	CZHB-1331
姓名	郭亚娟	刘志玲	刘思怡
上岗证号	CZHB-1332	CZHB-1203	CZHB-1124
	监测仪	器检定/校准情况	
监测项目	仪器名称及型号	仪器编号	检定/校准部门 与有效日期
- 4	YQ3000-D 大流量烟 尘 (气) 测试仪	CZHB145	陕西国华现代测控技 术有限公司 2022-3-1
氯化氢、	YQ3000-D 大流量烟 尘 (气) 测试仪	CZHB190	陕西力源仪器设备检 测有限公司 2021-8-14
非甲烷总烃	MH1200 型全自动大 气/颗粒物采样器	CZHB177	陝西协成测试技术有 限公司 2021-8-3
	ZR-3710 双路烟气采 样器	CZHB127	陝西国华现代测控技 术有限公司 2021-6-7
非甲烷总烃	G5 型气相色谱仪	CZHB007	陕西国华现代测控技 术有限公司 2022-11-14
氯化氢	MH1205 型恒温恒流 大气/颗粒物采样器	CZHB206CZHB207 CZHB208CZHB209	陕西国华现代测控技 术有限公司 2022-3-15
厂界噪声	HS6226 型多功能 声级计	CZHB130	陕西省计量科学研究 院 2021-5-21
) 3F******	HS6020型声级校准器	CZHB131	陕西省计量科学研究 院 2021-4-13
pH 值	DZB-718L 型便携式 多参数分析仪	CZHB219	陝西省计量科学研究 院 2021-5-27
悬浮物	FA1004 电子天平	CZHB046	陕西国华现代测控技 术有限公司 2021-11-14
AS-17-100	GZX-9240MBE 型电 热鼓风干燥箱	CZHB027	陝西国华现代测控技 术有限公司 2021-11-14

附件:

			检测仪	器检定/4	交准作	青况			
检测项目	1	仪器	名称及型号	ť	义器绑	時号		检定/校准 与有效E	
氯化氢		1000000	可见分光 光度计	C	ZHB	004	0.000	西国华现代	则控技ス
震慶	28	VID21609	可见分光 光度计	С	ZHB	003	陕	西国华现代》	则控技术
化学需氧	量	酸	式滴定管	CZI	IB-Q	T-080		西国华现代 有限公司 20	
五日生化	需	USS TORNADO SALAS	0 型智能生化 音养箱	C.	ZHB	034		西国华现代海 限公司 202	
氧量		06640000	605F 型溶 解氧仪	C	ZHBO)44		国华现代》 限公司 202	
*10 *:	14	5.70 P-00000	80 智能生化 音养箱	C	ZHBO)33		国华现代》 限公司 202	
粪大肠菌	評		S-18S I 手提 蒸汽灭菌器	CZ	ZHB0	99		国华现代》 限公司 202	
总余氯		氯/总氯	3F 便携式余 /二氧化氯测 定仪	CZ	ZHB2	11	陝西	有计量科学 2021-4-1	
		HS6226	型多功能声	级计校准	情况	(CZ	ZHB130)	
监测时间	1	校准仪值 dB(A)	监测 前后	仪器读 dB(A	250	111111111111111111111111111111111111111	直偏差 B(A)	允许偏差 dB(A)	校准结论
		010	前	93.8	93.8			1000	1
4月7日		94.0	后	93.7	93.7		0.1	±0.5	合格
	19		前	93.8	93.8			0.000	(Marcon)
4月8日		94.0	后	93.8		(0.0	±0.5	合格
		MH1205	型恒温恒流	大气/颗粒	立物采	. 样器	校准情	兒	
气路	4	义器编号	流量设定	标准流生	量计设	卖数	1,077,07	值误差 5.0%)	是否
名称		(0)	值	使用前	使月	用后	使用前	使用后	合格
	C	ZHB206	1000	998.4	99	7.1	-0.2	-0.3	合格
A路	C	ZHB207	1000	997.1	99	4.2	-0.3	-0.6	合格
(mL/min)	C	ZHB208	1000	995.5	993	3.9	-0.5	-0.6	合格
	C	ZHB209	1000	996.6	998	8.8	-0.3	-0.1	合格

附件:

	MH12	00型全自动	大气/颗粒	物采样器	校准情况		
气路	仪器编号	流量设定	标准流	量计读数	100	直误差	是否
名称		值	使用前	使用后	使用前	使用后	合格
A路 (mL/min)	CZHB177	500	498.4	497.6	-0,3	0.5	合格
	YQ300	00-D 大流量:	烟尘 (气)	测试仪机	2准情况		
仪器编号	流量设定	/1/55/2/50 PROPER	量计读数 min)		示值误 (±2.5%	777	是否
100000000000000000000000000000000000000	值(L/min)	使用前	使用后	使用	目前	使用后	合格
	20.0	19.9	19.9	-0	.5	-0.5	合格
CZHB190	30.0	29.8	29.9	-0.	.7	-0.3	合格
CZIIDI90	40.0	39.6	39.8	-1.	.0	-0.5	合格
	50.0	49.6	49.5	-0.	.8	-1.0	合格
	20.0	20.0	20.1	0.	0	0.5	合格
CZHB145	30.0	29.8	29.8	-0.	7	-0.7	合格
CZHD143	40.0	39.8	39.6	-0.	5	-1.0	合格
	50.0	49.5	49.6	-1.	0	-0.8	合格
	ZR	-3710 型双距	A烟气采料	器校准情	况		
气路	仪器编号	流量设定	标准流量	计读数	115000000	(误差 .5%)	是否
名称	(X tut sitt 3	值	使用前	使用后	使用前	使用后	合格
A路 (mL/min)	CZHB127	500	496.2	497.7	-0.8	-0.5	合格
		质量控制指	施(标准	样品)	400		
				质控约			B 30
序号	检测项目	标准样品	測定结果 (mg/L)	标准 (mg/	100	控要求 (%)	是否 合格
1	氨氮	2005134	4.509	4.4	6	±0.23	合格
2	化学需 氧量	201148	59	57.	0	±4.3	合格